Metamath Proof Explorer


Theorem fundmpss

Description: If a class F is a proper subset of a function G , then dom F C. dom G . (Contributed by Scott Fenton, 20-Apr-2011)

Ref Expression
Assertion fundmpss FunGFGdomFdomG

Proof

Step Hyp Ref Expression
1 pssss FGFG
2 dmss FGdomFdomG
3 1 2 syl FGdomFdomG
4 3 a1i FunGFGdomFdomG
5 pssdif FGGF
6 n0 GFppGF
7 5 6 sylib FGppGF
8 7 adantl FunGFGppGF
9 funrel FunGRelG
10 reldif RelGRelGF
11 9 10 syl FunGRelGF
12 elrel RelGFpGFxyp=xy
13 eleq1 p=xypGFxyGF
14 df-br xGFyxyGF
15 13 14 bitr4di p=xypGFxGFy
16 15 biimpcd pGFp=xyxGFy
17 16 adantl RelGFpGFp=xyxGFy
18 17 2eximdv RelGFpGFxyp=xyxyxGFy
19 12 18 mpd RelGFpGFxyxGFy
20 19 ex RelGFpGFxyxGFy
21 11 20 syl FunGpGFxyxGFy
22 21 adantr FunGFGpGFxyxGFy
23 difss GFG
24 23 ssbri xGFyxGy
25 24 eximi yxGFyyxGy
26 25 a1i FunGFGyxGFyyxGy
27 brdif xGFyxGy¬xFy
28 27 simprbi xGFy¬xFy
29 28 adantl FunGFGxGFy¬xFy
30 1 ssbrd FGxFzxGz
31 30 ad2antlr FunGFGxGFyxFzxGz
32 dffun2 FunGRelGxyzxGyxGzy=z
33 32 simprbi FunGxyzxGyxGzy=z
34 2sp yzxGyxGzy=zxGyxGzy=z
35 34 sps xyzxGyxGzy=zxGyxGzy=z
36 33 35 syl FunGxGyxGzy=z
37 breq2 y=zxFyxFz
38 37 biimprd y=zxFzxFy
39 36 38 syl6 FunGxGyxGzxFzxFy
40 39 expd FunGxGyxGzxFzxFy
41 27 simplbi xGFyxGy
42 40 41 impel FunGxGFyxGzxFzxFy
43 42 adantlr FunGFGxGFyxGzxFzxFy
44 43 com23 FunGFGxGFyxFzxGzxFy
45 31 44 mpdd FunGFGxGFyxFzxFy
46 45 exlimdv FunGFGxGFyzxFzxFy
47 29 46 mtod FunGFGxGFy¬zxFz
48 47 ex FunGFGxGFy¬zxFz
49 48 exlimdv FunGFGyxGFy¬zxFz
50 26 49 jcad FunGFGyxGFyyxGy¬zxFz
51 50 eximdv FunGFGxyxGFyxyxGy¬zxFz
52 22 51 syld FunGFGpGFxyxGy¬zxFz
53 52 exlimdv FunGFGppGFxyxGy¬zxFz
54 8 53 mpd FunGFGxyxGy¬zxFz
55 nss ¬domGdomFxxdomG¬xdomF
56 vex xV
57 56 eldm xdomGyxGy
58 56 eldm xdomFzxFz
59 58 notbii ¬xdomF¬zxFz
60 57 59 anbi12i xdomG¬xdomFyxGy¬zxFz
61 60 exbii xxdomG¬xdomFxyxGy¬zxFz
62 55 61 bitri ¬domGdomFxyxGy¬zxFz
63 54 62 sylibr FunGFG¬domGdomF
64 63 ex FunGFG¬domGdomF
65 4 64 jcad FunGFGdomFdomG¬domGdomF
66 dfpss3 domFdomGdomFdomG¬domGdomF
67 65 66 imbitrrdi FunGFGdomFdomG