Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptrab.f |
|- F = ( x e. V |-> { y e. M | ph } ) |
2 |
|
fvmptrab.r |
|- ( x = X -> ( ph <-> ps ) ) |
3 |
|
fvmptrab.s |
|- ( x = X -> M = N ) |
4 |
|
fvmptrab.v |
|- ( X e. V -> N e. _V ) |
5 |
|
fvmptrab.n |
|- ( X e/ V -> N = (/) ) |
6 |
1
|
a1i |
|- ( X e. V -> F = ( x e. V |-> { y e. M | ph } ) ) |
7 |
3 2
|
rabeqbidv |
|- ( x = X -> { y e. M | ph } = { y e. N | ps } ) |
8 |
7
|
adantl |
|- ( ( X e. V /\ x = X ) -> { y e. M | ph } = { y e. N | ps } ) |
9 |
|
id |
|- ( X e. V -> X e. V ) |
10 |
|
eqid |
|- { y e. N | ps } = { y e. N | ps } |
11 |
10 4
|
rabexd |
|- ( X e. V -> { y e. N | ps } e. _V ) |
12 |
6 8 9 11
|
fvmptd |
|- ( X e. V -> ( F ` X ) = { y e. N | ps } ) |
13 |
1
|
fvmptndm |
|- ( -. X e. V -> ( F ` X ) = (/) ) |
14 |
|
df-nel |
|- ( X e/ V <-> -. X e. V ) |
15 |
|
rabeq |
|- ( N = (/) -> { y e. N | ps } = { y e. (/) | ps } ) |
16 |
|
rab0 |
|- { y e. (/) | ps } = (/) |
17 |
15 16
|
eqtr2di |
|- ( N = (/) -> (/) = { y e. N | ps } ) |
18 |
5 17
|
syl |
|- ( X e/ V -> (/) = { y e. N | ps } ) |
19 |
14 18
|
sylbir |
|- ( -. X e. V -> (/) = { y e. N | ps } ) |
20 |
13 19
|
eqtrd |
|- ( -. X e. V -> ( F ` X ) = { y e. N | ps } ) |
21 |
12 20
|
pm2.61i |
|- ( F ` X ) = { y e. N | ps } |