| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptrab.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ 𝑀 ∣ 𝜑 } ) |
| 2 |
|
fvmptrab.r |
⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
fvmptrab.s |
⊢ ( 𝑥 = 𝑋 → 𝑀 = 𝑁 ) |
| 4 |
|
fvmptrab.v |
⊢ ( 𝑋 ∈ 𝑉 → 𝑁 ∈ V ) |
| 5 |
|
fvmptrab.n |
⊢ ( 𝑋 ∉ 𝑉 → 𝑁 = ∅ ) |
| 6 |
1
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ 𝑀 ∣ 𝜑 } ) ) |
| 7 |
3 2
|
rabeqbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ 𝑁 ∣ 𝜓 } ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋 ) → { 𝑦 ∈ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ 𝑁 ∣ 𝜓 } ) |
| 9 |
|
id |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
eqid |
⊢ { 𝑦 ∈ 𝑁 ∣ 𝜓 } = { 𝑦 ∈ 𝑁 ∣ 𝜓 } |
| 11 |
10 4
|
rabexd |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑦 ∈ 𝑁 ∣ 𝜓 } ∈ V ) |
| 12 |
6 8 9 11
|
fvmptd |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ 𝑁 ∣ 𝜓 } ) |
| 13 |
1
|
fvmptndm |
⊢ ( ¬ 𝑋 ∈ 𝑉 → ( 𝐹 ‘ 𝑋 ) = ∅ ) |
| 14 |
|
df-nel |
⊢ ( 𝑋 ∉ 𝑉 ↔ ¬ 𝑋 ∈ 𝑉 ) |
| 15 |
|
rabeq |
⊢ ( 𝑁 = ∅ → { 𝑦 ∈ 𝑁 ∣ 𝜓 } = { 𝑦 ∈ ∅ ∣ 𝜓 } ) |
| 16 |
|
rab0 |
⊢ { 𝑦 ∈ ∅ ∣ 𝜓 } = ∅ |
| 17 |
15 16
|
eqtr2di |
⊢ ( 𝑁 = ∅ → ∅ = { 𝑦 ∈ 𝑁 ∣ 𝜓 } ) |
| 18 |
5 17
|
syl |
⊢ ( 𝑋 ∉ 𝑉 → ∅ = { 𝑦 ∈ 𝑁 ∣ 𝜓 } ) |
| 19 |
14 18
|
sylbir |
⊢ ( ¬ 𝑋 ∈ 𝑉 → ∅ = { 𝑦 ∈ 𝑁 ∣ 𝜓 } ) |
| 20 |
13 19
|
eqtrd |
⊢ ( ¬ 𝑋 ∈ 𝑉 → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ 𝑁 ∣ 𝜓 } ) |
| 21 |
12 20
|
pm2.61i |
⊢ ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ 𝑁 ∣ 𝜓 } |