Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptn.1 |
|- ( x = D -> B = C ) |
2 |
|
fvmptn.2 |
|- F = ( x e. A |-> B ) |
3 |
1
|
eleq1d |
|- ( x = D -> ( B e. _V <-> C e. _V ) ) |
4 |
2
|
dmmpt |
|- dom F = { x e. A | B e. _V } |
5 |
3 4
|
elrab2 |
|- ( D e. dom F <-> ( D e. A /\ C e. _V ) ) |
6 |
1 2
|
fvmptg |
|- ( ( D e. A /\ C e. _V ) -> ( F ` D ) = C ) |
7 |
|
eqimss |
|- ( ( F ` D ) = C -> ( F ` D ) C_ C ) |
8 |
6 7
|
syl |
|- ( ( D e. A /\ C e. _V ) -> ( F ` D ) C_ C ) |
9 |
5 8
|
sylbi |
|- ( D e. dom F -> ( F ` D ) C_ C ) |
10 |
|
ndmfv |
|- ( -. D e. dom F -> ( F ` D ) = (/) ) |
11 |
|
0ss |
|- (/) C_ C |
12 |
10 11
|
eqsstrdi |
|- ( -. D e. dom F -> ( F ` D ) C_ C ) |
13 |
9 12
|
pm2.61i |
|- ( F ` D ) C_ C |