| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvmptrab1w.f |
|- F = ( x e. V |-> { y e. [_ x / m ]_ M | ph } ) |
| 2 |
|
elfvmptrab1w.v |
|- ( X e. V -> [_ X / m ]_ M e. _V ) |
| 3 |
|
elfvdm |
|- ( Y e. ( F ` X ) -> X e. dom F ) |
| 4 |
1
|
dmmptss |
|- dom F C_ V |
| 5 |
4
|
sseli |
|- ( X e. dom F -> X e. V ) |
| 6 |
|
rabexg |
|- ( [_ X / m ]_ M e. _V -> { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) |
| 7 |
5 2 6
|
3syl |
|- ( X e. dom F -> { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) |
| 8 |
|
nfcv |
|- F/_ x X |
| 9 |
|
nfsbc1v |
|- F/ x [. X / x ]. ph |
| 10 |
|
nfcv |
|- F/_ x M |
| 11 |
8 10
|
nfcsbw |
|- F/_ x [_ X / m ]_ M |
| 12 |
9 11
|
nfrabw |
|- F/_ x { y e. [_ X / m ]_ M | [. X / x ]. ph } |
| 13 |
|
csbeq1 |
|- ( x = X -> [_ x / m ]_ M = [_ X / m ]_ M ) |
| 14 |
|
sbceq1a |
|- ( x = X -> ( ph <-> [. X / x ]. ph ) ) |
| 15 |
13 14
|
rabeqbidv |
|- ( x = X -> { y e. [_ x / m ]_ M | ph } = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) |
| 16 |
8 12 15 1
|
fvmptf |
|- ( ( X e. V /\ { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) -> ( F ` X ) = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) |
| 17 |
5 7 16
|
syl2anc |
|- ( X e. dom F -> ( F ` X ) = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) |
| 18 |
17
|
eleq2d |
|- ( X e. dom F -> ( Y e. ( F ` X ) <-> Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } ) ) |
| 19 |
|
elrabi |
|- ( Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } -> Y e. [_ X / m ]_ M ) |
| 20 |
5 19
|
anim12i |
|- ( ( X e. dom F /\ Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) |
| 21 |
20
|
ex |
|- ( X e. dom F -> ( Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) |
| 22 |
18 21
|
sylbid |
|- ( X e. dom F -> ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) |
| 23 |
3 22
|
mpcom |
|- ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) |