Metamath Proof Explorer


Theorem elfvmptrab1w

Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Version of elfvmptrab1 with a disjoint variable condition, which does not require ax-13 . (Contributed by Alexander van der Vekens, 15-Jul-2018) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses elfvmptrab1w.f F=xVyx/mM|φ
elfvmptrab1w.v XVX/mMV
Assertion elfvmptrab1w YFXXVYX/mM

Proof

Step Hyp Ref Expression
1 elfvmptrab1w.f F=xVyx/mM|φ
2 elfvmptrab1w.v XVX/mMV
3 elfvdm YFXXdomF
4 1 dmmptss domFV
5 4 sseli XdomFXV
6 rabexg X/mMVyX/mM|[˙X/x]˙φV
7 5 2 6 3syl XdomFyX/mM|[˙X/x]˙φV
8 nfcv _xX
9 nfsbc1v x[˙X/x]˙φ
10 nfcv _xM
11 8 10 nfcsbw _xX/mM
12 9 11 nfrabw _xyX/mM|[˙X/x]˙φ
13 csbeq1 x=Xx/mM=X/mM
14 sbceq1a x=Xφ[˙X/x]˙φ
15 13 14 rabeqbidv x=Xyx/mM|φ=yX/mM|[˙X/x]˙φ
16 8 12 15 1 fvmptf XVyX/mM|[˙X/x]˙φVFX=yX/mM|[˙X/x]˙φ
17 5 7 16 syl2anc XdomFFX=yX/mM|[˙X/x]˙φ
18 17 eleq2d XdomFYFXYyX/mM|[˙X/x]˙φ
19 elrabi YyX/mM|[˙X/x]˙φYX/mM
20 5 19 anim12i XdomFYyX/mM|[˙X/x]˙φXVYX/mM
21 20 ex XdomFYyX/mM|[˙X/x]˙φXVYX/mM
22 18 21 sylbid XdomFYFXXVYX/mM
23 3 22 mpcom YFXXVYX/mM