| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvfundmfvn0 |  |-  ( ( F ` X ) =/= (/) -> ( X e. dom F /\ Fun ( F |` { X } ) ) ) | 
						
							| 2 |  | eldmressnsn |  |-  ( X e. dom F -> X e. dom ( F |` { X } ) ) | 
						
							| 3 |  | fvelrn |  |-  ( ( Fun ( F |` { X } ) /\ X e. dom ( F |` { X } ) ) -> ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) ) | 
						
							| 4 |  | pm3.2 |  |-  ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) -> ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( Fun ( F |` { X } ) /\ X e. dom ( F |` { X } ) ) -> ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) | 
						
							| 6 | 5 | ex |  |-  ( Fun ( F |` { X } ) -> ( X e. dom ( F |` { X } ) -> ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) ) | 
						
							| 7 | 6 | com13 |  |-  ( X e. dom F -> ( X e. dom ( F |` { X } ) -> ( Fun ( F |` { X } ) -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) ) | 
						
							| 8 | 2 7 | mpd |  |-  ( X e. dom F -> ( Fun ( F |` { X } ) -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) | 
						
							| 9 | 8 | imp |  |-  ( ( X e. dom F /\ Fun ( F |` { X } ) ) -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) | 
						
							| 10 |  | fvressn |  |-  ( X e. dom F -> ( ( F |` { X } ) ` X ) = ( F ` X ) ) | 
						
							| 11 | 10 | eleq1d |  |-  ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) <-> ( F ` X ) e. ran ( F |` { X } ) ) ) | 
						
							| 12 |  | fvrnressn |  |-  ( X e. dom F -> ( ( F ` X ) e. ran ( F |` { X } ) -> ( F ` X ) e. ran F ) ) | 
						
							| 13 | 11 12 | sylbid |  |-  ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) -> ( F ` X ) e. ran F ) ) | 
						
							| 14 | 13 | impcom |  |-  ( ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) -> ( F ` X ) e. ran F ) | 
						
							| 15 | 1 9 14 | 3syl |  |-  ( ( F ` X ) =/= (/) -> ( F ` X ) e. ran F ) |