Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfzto1st.d |
|- D = ( 1 ... N ) |
2 |
|
psgnfzto1st.p |
|- P = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) |
3 |
|
simpll |
|- ( ( ( I = 1 /\ i e. D ) /\ i = 1 ) -> I = 1 ) |
4 |
|
simpr |
|- ( ( ( I = 1 /\ i e. D ) /\ i = 1 ) -> i = 1 ) |
5 |
3 4
|
eqtr4d |
|- ( ( ( I = 1 /\ i e. D ) /\ i = 1 ) -> I = i ) |
6 |
|
simpr |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i <_ I ) |
7 |
|
simplll |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> I = 1 ) |
8 |
6 7
|
breqtrd |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i <_ 1 ) |
9 |
|
simpllr |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i e. D ) |
10 |
9 1
|
eleqtrdi |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i e. ( 1 ... N ) ) |
11 |
|
elfzle1 |
|- ( i e. ( 1 ... N ) -> 1 <_ i ) |
12 |
10 11
|
syl |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> 1 <_ i ) |
13 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
14 |
13 10
|
sselid |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i e. NN ) |
15 |
14
|
nnred |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i e. RR ) |
16 |
|
1red |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> 1 e. RR ) |
17 |
15 16
|
letri3d |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> ( i = 1 <-> ( i <_ 1 /\ 1 <_ i ) ) ) |
18 |
8 12 17
|
mpbir2and |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i = 1 ) |
19 |
|
simplr |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> -. i = 1 ) |
20 |
18 19
|
pm2.21dd |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> ( i - 1 ) = i ) |
21 |
|
eqidd |
|- ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ -. i <_ I ) -> i = i ) |
22 |
20 21
|
ifeqda |
|- ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) -> if ( i <_ I , ( i - 1 ) , i ) = i ) |
23 |
5 22
|
ifeqda |
|- ( ( I = 1 /\ i e. D ) -> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) = i ) |
24 |
23
|
mpteq2dva |
|- ( I = 1 -> ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) = ( i e. D |-> i ) ) |
25 |
|
mptresid |
|- ( _I |` D ) = ( i e. D |-> i ) |
26 |
24 2 25
|
3eqtr4g |
|- ( I = 1 -> P = ( _I |` D ) ) |