| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfzto1st.d |  |-  D = ( 1 ... N ) | 
						
							| 2 |  | psgnfzto1st.p |  |-  P = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) | 
						
							| 3 |  | simpll |  |-  ( ( ( I = 1 /\ i e. D ) /\ i = 1 ) -> I = 1 ) | 
						
							| 4 |  | simpr |  |-  ( ( ( I = 1 /\ i e. D ) /\ i = 1 ) -> i = 1 ) | 
						
							| 5 | 3 4 | eqtr4d |  |-  ( ( ( I = 1 /\ i e. D ) /\ i = 1 ) -> I = i ) | 
						
							| 6 |  | simpr |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i <_ I ) | 
						
							| 7 |  | simplll |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> I = 1 ) | 
						
							| 8 | 6 7 | breqtrd |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i <_ 1 ) | 
						
							| 9 |  | simpllr |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i e. D ) | 
						
							| 10 | 9 1 | eleqtrdi |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i e. ( 1 ... N ) ) | 
						
							| 11 |  | elfzle1 |  |-  ( i e. ( 1 ... N ) -> 1 <_ i ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> 1 <_ i ) | 
						
							| 13 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 14 | 13 10 | sselid |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i e. NN ) | 
						
							| 15 | 14 | nnred |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i e. RR ) | 
						
							| 16 |  | 1red |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> 1 e. RR ) | 
						
							| 17 | 15 16 | letri3d |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> ( i = 1 <-> ( i <_ 1 /\ 1 <_ i ) ) ) | 
						
							| 18 | 8 12 17 | mpbir2and |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> i = 1 ) | 
						
							| 19 |  | simplr |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> -. i = 1 ) | 
						
							| 20 | 18 19 | pm2.21dd |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ i <_ I ) -> ( i - 1 ) = i ) | 
						
							| 21 |  | eqidd |  |-  ( ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) /\ -. i <_ I ) -> i = i ) | 
						
							| 22 | 20 21 | ifeqda |  |-  ( ( ( I = 1 /\ i e. D ) /\ -. i = 1 ) -> if ( i <_ I , ( i - 1 ) , i ) = i ) | 
						
							| 23 | 5 22 | ifeqda |  |-  ( ( I = 1 /\ i e. D ) -> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) = i ) | 
						
							| 24 | 23 | mpteq2dva |  |-  ( I = 1 -> ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) = ( i e. D |-> i ) ) | 
						
							| 25 |  | mptresid |  |-  ( _I |` D ) = ( i e. D |-> i ) | 
						
							| 26 | 24 2 25 | 3eqtr4g |  |-  ( I = 1 -> P = ( _I |` D ) ) |