| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfzto1st.d |  |-  D = ( 1 ... N ) | 
						
							| 2 |  | psgnfzto1st.p |  |-  P = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) | 
						
							| 3 |  | psgnfzto1st.g |  |-  G = ( SymGrp ` D ) | 
						
							| 4 |  | psgnfzto1st.b |  |-  B = ( Base ` G ) | 
						
							| 5 |  | elfz1b |  |-  ( I e. ( 1 ... N ) <-> ( I e. NN /\ N e. NN /\ I <_ N ) ) | 
						
							| 6 | 5 | biimpi |  |-  ( I e. ( 1 ... N ) -> ( I e. NN /\ N e. NN /\ I <_ N ) ) | 
						
							| 7 | 6 1 | eleq2s |  |-  ( I e. D -> ( I e. NN /\ N e. NN /\ I <_ N ) ) | 
						
							| 8 |  | 3ancoma |  |-  ( ( N e. NN /\ I e. NN /\ I <_ N ) <-> ( I e. NN /\ N e. NN /\ I <_ N ) ) | 
						
							| 9 | 7 8 | sylibr |  |-  ( I e. D -> ( N e. NN /\ I e. NN /\ I <_ N ) ) | 
						
							| 10 |  | df-3an |  |-  ( ( N e. NN /\ I e. NN /\ I <_ N ) <-> ( ( N e. NN /\ I e. NN ) /\ I <_ N ) ) | 
						
							| 11 |  | breq1 |  |-  ( m = 1 -> ( m <_ N <-> 1 <_ N ) ) | 
						
							| 12 |  | simpl |  |-  ( ( m = 1 /\ i e. D ) -> m = 1 ) | 
						
							| 13 | 12 | breq2d |  |-  ( ( m = 1 /\ i e. D ) -> ( i <_ m <-> i <_ 1 ) ) | 
						
							| 14 | 13 | ifbid |  |-  ( ( m = 1 /\ i e. D ) -> if ( i <_ m , ( i - 1 ) , i ) = if ( i <_ 1 , ( i - 1 ) , i ) ) | 
						
							| 15 | 12 14 | ifeq12d |  |-  ( ( m = 1 /\ i e. D ) -> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) = if ( i = 1 , 1 , if ( i <_ 1 , ( i - 1 ) , i ) ) ) | 
						
							| 16 | 15 | mpteq2dva |  |-  ( m = 1 -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) = ( i e. D |-> if ( i = 1 , 1 , if ( i <_ 1 , ( i - 1 ) , i ) ) ) ) | 
						
							| 17 |  | eqid |  |-  1 = 1 | 
						
							| 18 |  | eqid |  |-  ( i e. D |-> if ( i = 1 , 1 , if ( i <_ 1 , ( i - 1 ) , i ) ) ) = ( i e. D |-> if ( i = 1 , 1 , if ( i <_ 1 , ( i - 1 ) , i ) ) ) | 
						
							| 19 | 1 18 | fzto1st1 |  |-  ( 1 = 1 -> ( i e. D |-> if ( i = 1 , 1 , if ( i <_ 1 , ( i - 1 ) , i ) ) ) = ( _I |` D ) ) | 
						
							| 20 | 17 19 | ax-mp |  |-  ( i e. D |-> if ( i = 1 , 1 , if ( i <_ 1 , ( i - 1 ) , i ) ) ) = ( _I |` D ) | 
						
							| 21 | 16 20 | eqtrdi |  |-  ( m = 1 -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) = ( _I |` D ) ) | 
						
							| 22 | 21 | eleq1d |  |-  ( m = 1 -> ( ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) e. B <-> ( _I |` D ) e. B ) ) | 
						
							| 23 | 11 22 | imbi12d |  |-  ( m = 1 -> ( ( m <_ N -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) e. B ) <-> ( 1 <_ N -> ( _I |` D ) e. B ) ) ) | 
						
							| 24 |  | breq1 |  |-  ( m = n -> ( m <_ N <-> n <_ N ) ) | 
						
							| 25 |  | simpl |  |-  ( ( m = n /\ i e. D ) -> m = n ) | 
						
							| 26 | 25 | breq2d |  |-  ( ( m = n /\ i e. D ) -> ( i <_ m <-> i <_ n ) ) | 
						
							| 27 | 26 | ifbid |  |-  ( ( m = n /\ i e. D ) -> if ( i <_ m , ( i - 1 ) , i ) = if ( i <_ n , ( i - 1 ) , i ) ) | 
						
							| 28 | 25 27 | ifeq12d |  |-  ( ( m = n /\ i e. D ) -> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) = if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) | 
						
							| 29 | 28 | mpteq2dva |  |-  ( m = n -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) = ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) ) | 
						
							| 30 | 29 | eleq1d |  |-  ( m = n -> ( ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) e. B <-> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) | 
						
							| 31 | 24 30 | imbi12d |  |-  ( m = n -> ( ( m <_ N -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) e. B ) <-> ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) ) | 
						
							| 32 |  | breq1 |  |-  ( m = ( n + 1 ) -> ( m <_ N <-> ( n + 1 ) <_ N ) ) | 
						
							| 33 |  | simpl |  |-  ( ( m = ( n + 1 ) /\ i e. D ) -> m = ( n + 1 ) ) | 
						
							| 34 | 33 | breq2d |  |-  ( ( m = ( n + 1 ) /\ i e. D ) -> ( i <_ m <-> i <_ ( n + 1 ) ) ) | 
						
							| 35 | 34 | ifbid |  |-  ( ( m = ( n + 1 ) /\ i e. D ) -> if ( i <_ m , ( i - 1 ) , i ) = if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) | 
						
							| 36 | 33 35 | ifeq12d |  |-  ( ( m = ( n + 1 ) /\ i e. D ) -> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) = if ( i = 1 , ( n + 1 ) , if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) ) | 
						
							| 37 | 36 | mpteq2dva |  |-  ( m = ( n + 1 ) -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) = ( i e. D |-> if ( i = 1 , ( n + 1 ) , if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) ) ) | 
						
							| 38 | 37 | eleq1d |  |-  ( m = ( n + 1 ) -> ( ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) e. B <-> ( i e. D |-> if ( i = 1 , ( n + 1 ) , if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) ) e. B ) ) | 
						
							| 39 | 32 38 | imbi12d |  |-  ( m = ( n + 1 ) -> ( ( m <_ N -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) e. B ) <-> ( ( n + 1 ) <_ N -> ( i e. D |-> if ( i = 1 , ( n + 1 ) , if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) ) e. B ) ) ) | 
						
							| 40 |  | breq1 |  |-  ( m = I -> ( m <_ N <-> I <_ N ) ) | 
						
							| 41 |  | simpl |  |-  ( ( m = I /\ i e. D ) -> m = I ) | 
						
							| 42 | 41 | breq2d |  |-  ( ( m = I /\ i e. D ) -> ( i <_ m <-> i <_ I ) ) | 
						
							| 43 | 42 | ifbid |  |-  ( ( m = I /\ i e. D ) -> if ( i <_ m , ( i - 1 ) , i ) = if ( i <_ I , ( i - 1 ) , i ) ) | 
						
							| 44 | 41 43 | ifeq12d |  |-  ( ( m = I /\ i e. D ) -> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) = if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) | 
						
							| 45 | 44 | mpteq2dva |  |-  ( m = I -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) ) | 
						
							| 46 | 45 2 | eqtr4di |  |-  ( m = I -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) = P ) | 
						
							| 47 | 46 | eleq1d |  |-  ( m = I -> ( ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) e. B <-> P e. B ) ) | 
						
							| 48 | 40 47 | imbi12d |  |-  ( m = I -> ( ( m <_ N -> ( i e. D |-> if ( i = 1 , m , if ( i <_ m , ( i - 1 ) , i ) ) ) e. B ) <-> ( I <_ N -> P e. B ) ) ) | 
						
							| 49 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 50 | 1 49 | eqeltri |  |-  D e. Fin | 
						
							| 51 | 3 | idresperm |  |-  ( D e. Fin -> ( _I |` D ) e. ( Base ` G ) ) | 
						
							| 52 | 50 51 | ax-mp |  |-  ( _I |` D ) e. ( Base ` G ) | 
						
							| 53 | 52 4 | eleqtrri |  |-  ( _I |` D ) e. B | 
						
							| 54 | 53 | 2a1i |  |-  ( N e. NN -> ( 1 <_ N -> ( _I |` D ) e. B ) ) | 
						
							| 55 |  | simplr |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> n e. NN ) | 
						
							| 56 | 55 | peano2nnd |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> ( n + 1 ) e. NN ) | 
						
							| 57 |  | simpll |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> N e. NN ) | 
						
							| 58 |  | simpr |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> ( n + 1 ) <_ N ) | 
						
							| 59 | 56 57 58 | 3jca |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> ( ( n + 1 ) e. NN /\ N e. NN /\ ( n + 1 ) <_ N ) ) | 
						
							| 60 |  | elfz1b |  |-  ( ( n + 1 ) e. ( 1 ... N ) <-> ( ( n + 1 ) e. NN /\ N e. NN /\ ( n + 1 ) <_ N ) ) | 
						
							| 61 | 59 60 | sylibr |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> ( n + 1 ) e. ( 1 ... N ) ) | 
						
							| 62 | 61 1 | eleqtrrdi |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> ( n + 1 ) e. D ) | 
						
							| 63 | 1 | psgnfzto1stlem |  |-  ( ( n e. NN /\ ( n + 1 ) e. D ) -> ( i e. D |-> if ( i = 1 , ( n + 1 ) , if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) ) = ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) o. ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) ) ) | 
						
							| 64 | 55 62 63 | syl2anc |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> ( i e. D |-> if ( i = 1 , ( n + 1 ) , if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) ) = ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) o. ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) ) ) | 
						
							| 65 | 64 | adantlr |  |-  ( ( ( ( N e. NN /\ n e. NN ) /\ ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) /\ ( n + 1 ) <_ N ) -> ( i e. D |-> if ( i = 1 , ( n + 1 ) , if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) ) = ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) o. ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) ) ) | 
						
							| 66 |  | eqid |  |-  ran ( pmTrsp ` D ) = ran ( pmTrsp ` D ) | 
						
							| 67 | 66 3 4 | symgtrf |  |-  ran ( pmTrsp ` D ) C_ B | 
						
							| 68 |  | eqid |  |-  ( pmTrsp ` D ) = ( pmTrsp ` D ) | 
						
							| 69 | 1 68 | pmtrto1cl |  |-  ( ( n e. NN /\ ( n + 1 ) e. D ) -> ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 70 | 55 62 69 | syl2anc |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 71 | 70 | adantlr |  |-  ( ( ( ( N e. NN /\ n e. NN ) /\ ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) /\ ( n + 1 ) <_ N ) -> ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 72 | 67 71 | sselid |  |-  ( ( ( ( N e. NN /\ n e. NN ) /\ ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) /\ ( n + 1 ) <_ N ) -> ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) e. B ) | 
						
							| 73 | 55 | nnred |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> n e. RR ) | 
						
							| 74 |  | 1red |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> 1 e. RR ) | 
						
							| 75 | 73 74 | readdcld |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> ( n + 1 ) e. RR ) | 
						
							| 76 | 57 | nnred |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> N e. RR ) | 
						
							| 77 | 73 | lep1d |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> n <_ ( n + 1 ) ) | 
						
							| 78 | 73 75 76 77 58 | letrd |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n + 1 ) <_ N ) -> n <_ N ) | 
						
							| 79 | 78 | adantlr |  |-  ( ( ( ( N e. NN /\ n e. NN ) /\ ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) /\ ( n + 1 ) <_ N ) -> n <_ N ) | 
						
							| 80 |  | simplr |  |-  ( ( ( ( N e. NN /\ n e. NN ) /\ ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) /\ ( n + 1 ) <_ N ) -> ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) | 
						
							| 81 | 79 80 | mpd |  |-  ( ( ( ( N e. NN /\ n e. NN ) /\ ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) /\ ( n + 1 ) <_ N ) -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) | 
						
							| 82 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 83 | 3 4 82 | symgov |  |-  ( ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) e. B /\ ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) -> ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) ( +g ` G ) ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) ) = ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) o. ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) ) ) | 
						
							| 84 | 3 4 82 | symgcl |  |-  ( ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) e. B /\ ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) -> ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) ( +g ` G ) ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) ) e. B ) | 
						
							| 85 | 83 84 | eqeltrrd |  |-  ( ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) e. B /\ ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) -> ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) o. ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) ) e. B ) | 
						
							| 86 | 72 81 85 | syl2anc |  |-  ( ( ( ( N e. NN /\ n e. NN ) /\ ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) /\ ( n + 1 ) <_ N ) -> ( ( ( pmTrsp ` D ) ` { n , ( n + 1 ) } ) o. ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) ) e. B ) | 
						
							| 87 | 65 86 | eqeltrd |  |-  ( ( ( ( N e. NN /\ n e. NN ) /\ ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) /\ ( n + 1 ) <_ N ) -> ( i e. D |-> if ( i = 1 , ( n + 1 ) , if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) ) e. B ) | 
						
							| 88 | 87 | ex |  |-  ( ( ( N e. NN /\ n e. NN ) /\ ( n <_ N -> ( i e. D |-> if ( i = 1 , n , if ( i <_ n , ( i - 1 ) , i ) ) ) e. B ) ) -> ( ( n + 1 ) <_ N -> ( i e. D |-> if ( i = 1 , ( n + 1 ) , if ( i <_ ( n + 1 ) , ( i - 1 ) , i ) ) ) e. B ) ) | 
						
							| 89 | 23 31 39 48 54 88 | nnindd |  |-  ( ( N e. NN /\ I e. NN ) -> ( I <_ N -> P e. B ) ) | 
						
							| 90 | 89 | imp |  |-  ( ( ( N e. NN /\ I e. NN ) /\ I <_ N ) -> P e. B ) | 
						
							| 91 | 10 90 | sylbi |  |-  ( ( N e. NN /\ I e. NN /\ I <_ N ) -> P e. B ) | 
						
							| 92 | 9 91 | syl |  |-  ( I e. D -> P e. B ) |