Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfzto1st.d |
|
2 |
|
psgnfzto1st.p |
|
3 |
|
psgnfzto1st.g |
|
4 |
|
psgnfzto1st.b |
|
5 |
|
elfz1b |
|
6 |
5
|
biimpi |
|
7 |
6 1
|
eleq2s |
|
8 |
|
3ancoma |
|
9 |
7 8
|
sylibr |
|
10 |
|
df-3an |
|
11 |
|
breq1 |
|
12 |
|
simpl |
|
13 |
12
|
breq2d |
|
14 |
13
|
ifbid |
|
15 |
12 14
|
ifeq12d |
|
16 |
15
|
mpteq2dva |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
1 18
|
fzto1st1 |
|
20 |
17 19
|
ax-mp |
|
21 |
16 20
|
eqtrdi |
|
22 |
21
|
eleq1d |
|
23 |
11 22
|
imbi12d |
|
24 |
|
breq1 |
|
25 |
|
simpl |
|
26 |
25
|
breq2d |
|
27 |
26
|
ifbid |
|
28 |
25 27
|
ifeq12d |
|
29 |
28
|
mpteq2dva |
|
30 |
29
|
eleq1d |
|
31 |
24 30
|
imbi12d |
|
32 |
|
breq1 |
|
33 |
|
simpl |
|
34 |
33
|
breq2d |
|
35 |
34
|
ifbid |
|
36 |
33 35
|
ifeq12d |
|
37 |
36
|
mpteq2dva |
|
38 |
37
|
eleq1d |
|
39 |
32 38
|
imbi12d |
|
40 |
|
breq1 |
|
41 |
|
simpl |
|
42 |
41
|
breq2d |
|
43 |
42
|
ifbid |
|
44 |
41 43
|
ifeq12d |
|
45 |
44
|
mpteq2dva |
|
46 |
45 2
|
eqtr4di |
|
47 |
46
|
eleq1d |
|
48 |
40 47
|
imbi12d |
|
49 |
|
fzfi |
|
50 |
1 49
|
eqeltri |
|
51 |
3
|
idresperm |
|
52 |
50 51
|
ax-mp |
|
53 |
52 4
|
eleqtrri |
|
54 |
53
|
2a1i |
|
55 |
|
simplr |
|
56 |
55
|
peano2nnd |
|
57 |
|
simpll |
|
58 |
|
simpr |
|
59 |
56 57 58
|
3jca |
|
60 |
|
elfz1b |
|
61 |
59 60
|
sylibr |
|
62 |
61 1
|
eleqtrrdi |
|
63 |
1
|
psgnfzto1stlem |
|
64 |
55 62 63
|
syl2anc |
|
65 |
64
|
adantlr |
|
66 |
|
eqid |
|
67 |
66 3 4
|
symgtrf |
|
68 |
|
eqid |
|
69 |
1 68
|
pmtrto1cl |
|
70 |
55 62 69
|
syl2anc |
|
71 |
70
|
adantlr |
|
72 |
67 71
|
sselid |
|
73 |
55
|
nnred |
|
74 |
|
1red |
|
75 |
73 74
|
readdcld |
|
76 |
57
|
nnred |
|
77 |
73
|
lep1d |
|
78 |
73 75 76 77 58
|
letrd |
|
79 |
78
|
adantlr |
|
80 |
|
simplr |
|
81 |
79 80
|
mpd |
|
82 |
|
eqid |
|
83 |
3 4 82
|
symgov |
|
84 |
3 4 82
|
symgcl |
|
85 |
83 84
|
eqeltrrd |
|
86 |
72 81 85
|
syl2anc |
|
87 |
65 86
|
eqeltrd |
|
88 |
87
|
ex |
|
89 |
23 31 39 48 54 88
|
nnindd |
|
90 |
89
|
imp |
|
91 |
10 90
|
sylbi |
|
92 |
9 91
|
syl |
|