| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfzto1st.d | ⊢ 𝐷  =  ( 1 ... 𝑁 ) | 
						
							| 2 |  | psgnfzto1st.p | ⊢ 𝑃  =  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 3 |  | psgnfzto1st.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 4 |  | psgnfzto1st.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | elfz1b | ⊢ ( 𝐼  ∈  ( 1 ... 𝑁 )  ↔  ( 𝐼  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝐼  ≤  𝑁 ) ) | 
						
							| 6 | 5 | biimpi | ⊢ ( 𝐼  ∈  ( 1 ... 𝑁 )  →  ( 𝐼  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝐼  ≤  𝑁 ) ) | 
						
							| 7 | 6 1 | eleq2s | ⊢ ( 𝐼  ∈  𝐷  →  ( 𝐼  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝐼  ≤  𝑁 ) ) | 
						
							| 8 |  | 3ancoma | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℕ  ∧  𝐼  ≤  𝑁 )  ↔  ( 𝐼  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝐼  ≤  𝑁 ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( 𝐼  ∈  𝐷  →  ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℕ  ∧  𝐼  ≤  𝑁 ) ) | 
						
							| 10 |  | df-3an | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℕ  ∧  𝐼  ≤  𝑁 )  ↔  ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℕ )  ∧  𝐼  ≤  𝑁 ) ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑚  =  1  →  ( 𝑚  ≤  𝑁  ↔  1  ≤  𝑁 ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑚  =  1  ∧  𝑖  ∈  𝐷 )  →  𝑚  =  1 ) | 
						
							| 13 | 12 | breq2d | ⊢ ( ( 𝑚  =  1  ∧  𝑖  ∈  𝐷 )  →  ( 𝑖  ≤  𝑚  ↔  𝑖  ≤  1 ) ) | 
						
							| 14 | 13 | ifbid | ⊢ ( ( 𝑚  =  1  ∧  𝑖  ∈  𝐷 )  →  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 )  =  if ( 𝑖  ≤  1 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) | 
						
							| 15 | 12 14 | ifeq12d | ⊢ ( ( 𝑚  =  1  ∧  𝑖  ∈  𝐷 )  →  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) )  =  if ( 𝑖  =  1 ,  1 ,  if ( 𝑖  ≤  1 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 16 | 15 | mpteq2dva | ⊢ ( 𝑚  =  1  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  1 ,  if ( 𝑖  ≤  1 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) ) | 
						
							| 17 |  | eqid | ⊢ 1  =  1 | 
						
							| 18 |  | eqid | ⊢ ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  1 ,  if ( 𝑖  ≤  1 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  1 ,  if ( 𝑖  ≤  1 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 19 | 1 18 | fzto1st1 | ⊢ ( 1  =  1  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  1 ,  if ( 𝑖  ≤  1 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 20 | 17 19 | ax-mp | ⊢ ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  1 ,  if ( 𝑖  ≤  1 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  (  I   ↾  𝐷 ) | 
						
							| 21 | 16 20 | eqtrdi | ⊢ ( 𝑚  =  1  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑚  =  1  →  ( ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵  ↔  (  I   ↾  𝐷 )  ∈  𝐵 ) ) | 
						
							| 23 | 11 22 | imbi12d | ⊢ ( 𝑚  =  1  →  ( ( 𝑚  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 )  ↔  ( 1  ≤  𝑁  →  (  I   ↾  𝐷 )  ∈  𝐵 ) ) ) | 
						
							| 24 |  | breq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  ≤  𝑁  ↔  𝑛  ≤  𝑁 ) ) | 
						
							| 25 |  | simpl | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑖  ∈  𝐷 )  →  𝑚  =  𝑛 ) | 
						
							| 26 | 25 | breq2d | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑖  ∈  𝐷 )  →  ( 𝑖  ≤  𝑚  ↔  𝑖  ≤  𝑛 ) ) | 
						
							| 27 | 26 | ifbid | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑖  ∈  𝐷 )  →  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 )  =  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) | 
						
							| 28 | 25 27 | ifeq12d | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑖  ∈  𝐷 )  →  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) )  =  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 29 | 28 | mpteq2dva | ⊢ ( 𝑚  =  𝑛  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵  ↔  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) ) | 
						
							| 31 | 24 30 | imbi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 )  ↔  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) ) ) | 
						
							| 32 |  | breq1 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑚  ≤  𝑁  ↔  ( 𝑛  +  1 )  ≤  𝑁 ) ) | 
						
							| 33 |  | simpl | ⊢ ( ( 𝑚  =  ( 𝑛  +  1 )  ∧  𝑖  ∈  𝐷 )  →  𝑚  =  ( 𝑛  +  1 ) ) | 
						
							| 34 | 33 | breq2d | ⊢ ( ( 𝑚  =  ( 𝑛  +  1 )  ∧  𝑖  ∈  𝐷 )  →  ( 𝑖  ≤  𝑚  ↔  𝑖  ≤  ( 𝑛  +  1 ) ) ) | 
						
							| 35 | 34 | ifbid | ⊢ ( ( 𝑚  =  ( 𝑛  +  1 )  ∧  𝑖  ∈  𝐷 )  →  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 )  =  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) | 
						
							| 36 | 33 35 | ifeq12d | ⊢ ( ( 𝑚  =  ( 𝑛  +  1 )  ∧  𝑖  ∈  𝐷 )  →  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) )  =  if ( 𝑖  =  1 ,  ( 𝑛  +  1 ) ,  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 37 | 36 | mpteq2dva | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  ( 𝑛  +  1 ) ,  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵  ↔  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  ( 𝑛  +  1 ) ,  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) ) | 
						
							| 39 | 32 38 | imbi12d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝑚  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 )  ↔  ( ( 𝑛  +  1 )  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  ( 𝑛  +  1 ) ,  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) ) ) | 
						
							| 40 |  | breq1 | ⊢ ( 𝑚  =  𝐼  →  ( 𝑚  ≤  𝑁  ↔  𝐼  ≤  𝑁 ) ) | 
						
							| 41 |  | simpl | ⊢ ( ( 𝑚  =  𝐼  ∧  𝑖  ∈  𝐷 )  →  𝑚  =  𝐼 ) | 
						
							| 42 | 41 | breq2d | ⊢ ( ( 𝑚  =  𝐼  ∧  𝑖  ∈  𝐷 )  →  ( 𝑖  ≤  𝑚  ↔  𝑖  ≤  𝐼 ) ) | 
						
							| 43 | 42 | ifbid | ⊢ ( ( 𝑚  =  𝐼  ∧  𝑖  ∈  𝐷 )  →  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 )  =  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) | 
						
							| 44 | 41 43 | ifeq12d | ⊢ ( ( 𝑚  =  𝐼  ∧  𝑖  ∈  𝐷 )  →  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) )  =  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 45 | 44 | mpteq2dva | ⊢ ( 𝑚  =  𝐼  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) ) | 
						
							| 46 | 45 2 | eqtr4di | ⊢ ( 𝑚  =  𝐼  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  𝑃 ) | 
						
							| 47 | 46 | eleq1d | ⊢ ( 𝑚  =  𝐼  →  ( ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵  ↔  𝑃  ∈  𝐵 ) ) | 
						
							| 48 | 40 47 | imbi12d | ⊢ ( 𝑚  =  𝐼  →  ( ( 𝑚  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑚 ,  if ( 𝑖  ≤  𝑚 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 )  ↔  ( 𝐼  ≤  𝑁  →  𝑃  ∈  𝐵 ) ) ) | 
						
							| 49 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 50 | 1 49 | eqeltri | ⊢ 𝐷  ∈  Fin | 
						
							| 51 | 3 | idresperm | ⊢ ( 𝐷  ∈  Fin  →  (  I   ↾  𝐷 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 52 | 50 51 | ax-mp | ⊢ (  I   ↾  𝐷 )  ∈  ( Base ‘ 𝐺 ) | 
						
							| 53 | 52 4 | eleqtrri | ⊢ (  I   ↾  𝐷 )  ∈  𝐵 | 
						
							| 54 | 53 | 2a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  ≤  𝑁  →  (  I   ↾  𝐷 )  ∈  𝐵 ) ) | 
						
							| 55 |  | simplr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  𝑛  ∈  ℕ ) | 
						
							| 56 | 55 | peano2nnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 57 |  | simpll | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  𝑁  ∈  ℕ ) | 
						
							| 58 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑛  +  1 )  ≤  𝑁 ) | 
						
							| 59 | 56 57 58 | 3jca | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( ( 𝑛  +  1 )  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑛  +  1 )  ≤  𝑁 ) ) | 
						
							| 60 |  | elfz1b | ⊢ ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  ↔  ( ( 𝑛  +  1 )  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑛  +  1 )  ≤  𝑁 ) ) | 
						
							| 61 | 59 60 | sylibr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 62 | 61 1 | eleqtrrdi | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑛  +  1 )  ∈  𝐷 ) | 
						
							| 63 | 1 | psgnfzto1stlem | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  𝐷 )  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  ( 𝑛  +  1 ) ,  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∘  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) ) ) | 
						
							| 64 | 55 62 63 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  ( 𝑛  +  1 ) ,  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∘  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) ) ) | 
						
							| 65 | 64 | adantlr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  ( 𝑛  +  1 ) ,  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  =  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∘  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) ) ) | 
						
							| 66 |  | eqid | ⊢ ran  ( pmTrsp ‘ 𝐷 )  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 67 | 66 3 4 | symgtrf | ⊢ ran  ( pmTrsp ‘ 𝐷 )  ⊆  𝐵 | 
						
							| 68 |  | eqid | ⊢ ( pmTrsp ‘ 𝐷 )  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 69 | 1 68 | pmtrto1cl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  𝐷 )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∈  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 70 | 55 62 69 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∈  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 71 | 70 | adantlr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∈  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 72 | 67 71 | sselid | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∈  𝐵 ) | 
						
							| 73 | 55 | nnred | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  𝑛  ∈  ℝ ) | 
						
							| 74 |  | 1red | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  1  ∈  ℝ ) | 
						
							| 75 | 73 74 | readdcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 76 | 57 | nnred | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  𝑁  ∈  ℝ ) | 
						
							| 77 | 73 | lep1d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  𝑛  ≤  ( 𝑛  +  1 ) ) | 
						
							| 78 | 73 75 76 77 58 | letrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  𝑛  ≤  𝑁 ) | 
						
							| 79 | 78 | adantlr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  𝑛  ≤  𝑁 ) | 
						
							| 80 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) ) | 
						
							| 81 | 79 80 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) | 
						
							| 82 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 83 | 3 4 82 | symgov | ⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∈  𝐵  ∧  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 )  →  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } ) ( +g ‘ 𝐺 ) ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) )  =  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∘  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) ) ) | 
						
							| 84 | 3 4 82 | symgcl | ⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∈  𝐵  ∧  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 )  →  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } ) ( +g ‘ 𝐺 ) ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) )  ∈  𝐵 ) | 
						
							| 85 | 83 84 | eqeltrrd | ⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∈  𝐵  ∧  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 )  →  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∘  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) )  ∈  𝐵 ) | 
						
							| 86 | 72 81 85 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 ,  ( 𝑛  +  1 ) } )  ∘  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) )  ∈  𝐵 ) | 
						
							| 87 | 65 86 | eqeltrd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) )  ∧  ( 𝑛  +  1 )  ≤  𝑁 )  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  ( 𝑛  +  1 ) ,  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) | 
						
							| 88 | 87 | ex | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑛  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝑛 ,  if ( 𝑖  ≤  𝑛 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) )  →  ( ( 𝑛  +  1 )  ≤  𝑁  →  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  ( 𝑛  +  1 ) ,  if ( 𝑖  ≤  ( 𝑛  +  1 ) ,  ( 𝑖  −  1 ) ,  𝑖 ) ) )  ∈  𝐵 ) ) | 
						
							| 89 | 23 31 39 48 54 88 | nnindd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℕ )  →  ( 𝐼  ≤  𝑁  →  𝑃  ∈  𝐵 ) ) | 
						
							| 90 | 89 | imp | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℕ )  ∧  𝐼  ≤  𝑁 )  →  𝑃  ∈  𝐵 ) | 
						
							| 91 | 10 90 | sylbi | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℕ  ∧  𝐼  ≤  𝑁 )  →  𝑃  ∈  𝐵 ) | 
						
							| 92 | 9 91 | syl | ⊢ ( 𝐼  ∈  𝐷  →  𝑃  ∈  𝐵 ) |