Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfzto1st.d |
⊢ 𝐷 = ( 1 ... 𝑁 ) |
2 |
|
psgnfzto1st.p |
⊢ 𝑃 = ( 𝑖 ∈ 𝐷 ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖 ≤ 𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) ) |
3 |
|
psgnfzto1st.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
4 |
|
psgnfzto1st.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
5 |
1 2
|
fzto1stfv1 |
⊢ ( 𝐼 ∈ 𝐷 → ( 𝑃 ‘ 1 ) = 𝐼 ) |
6 |
5
|
fveq2d |
⊢ ( 𝐼 ∈ 𝐷 → ( ◡ 𝑃 ‘ ( 𝑃 ‘ 1 ) ) = ( ◡ 𝑃 ‘ 𝐼 ) ) |
7 |
1 2 3 4
|
fzto1st |
⊢ ( 𝐼 ∈ 𝐷 → 𝑃 ∈ 𝐵 ) |
8 |
3 4
|
symgbasf1o |
⊢ ( 𝑃 ∈ 𝐵 → 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) |
9 |
7 8
|
syl |
⊢ ( 𝐼 ∈ 𝐷 → 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) |
10 |
|
elfzuz2 |
⊢ ( 𝐼 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
11 |
10 1
|
eleq2s |
⊢ ( 𝐼 ∈ 𝐷 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
12 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) |
13 |
12 1
|
eleqtrrdi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ 𝐷 ) |
14 |
11 13
|
syl |
⊢ ( 𝐼 ∈ 𝐷 → 1 ∈ 𝐷 ) |
15 |
|
f1ocnvfv1 |
⊢ ( ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 ∧ 1 ∈ 𝐷 ) → ( ◡ 𝑃 ‘ ( 𝑃 ‘ 1 ) ) = 1 ) |
16 |
9 14 15
|
syl2anc |
⊢ ( 𝐼 ∈ 𝐷 → ( ◡ 𝑃 ‘ ( 𝑃 ‘ 1 ) ) = 1 ) |
17 |
6 16
|
eqtr3d |
⊢ ( 𝐼 ∈ 𝐷 → ( ◡ 𝑃 ‘ 𝐼 ) = 1 ) |