Metamath Proof Explorer


Theorem fzto1stinvn

Description: Value of the inverse of our permutation P at I . (Contributed by Thierry Arnoux, 23-Aug-2020)

Ref Expression
Hypotheses psgnfzto1st.d 𝐷 = ( 1 ... 𝑁 )
psgnfzto1st.p 𝑃 = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) )
psgnfzto1st.g 𝐺 = ( SymGrp ‘ 𝐷 )
psgnfzto1st.b 𝐵 = ( Base ‘ 𝐺 )
Assertion fzto1stinvn ( 𝐼𝐷 → ( 𝑃𝐼 ) = 1 )

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d 𝐷 = ( 1 ... 𝑁 )
2 psgnfzto1st.p 𝑃 = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) )
3 psgnfzto1st.g 𝐺 = ( SymGrp ‘ 𝐷 )
4 psgnfzto1st.b 𝐵 = ( Base ‘ 𝐺 )
5 1 2 fzto1stfv1 ( 𝐼𝐷 → ( 𝑃 ‘ 1 ) = 𝐼 )
6 5 fveq2d ( 𝐼𝐷 → ( 𝑃 ‘ ( 𝑃 ‘ 1 ) ) = ( 𝑃𝐼 ) )
7 1 2 3 4 fzto1st ( 𝐼𝐷𝑃𝐵 )
8 3 4 symgbasf1o ( 𝑃𝐵𝑃 : 𝐷1-1-onto𝐷 )
9 7 8 syl ( 𝐼𝐷𝑃 : 𝐷1-1-onto𝐷 )
10 elfzuz2 ( 𝐼 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ( ℤ ‘ 1 ) )
11 10 1 eleq2s ( 𝐼𝐷𝑁 ∈ ( ℤ ‘ 1 ) )
12 eluzfz1 ( 𝑁 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) )
13 12 1 eleqtrrdi ( 𝑁 ∈ ( ℤ ‘ 1 ) → 1 ∈ 𝐷 )
14 11 13 syl ( 𝐼𝐷 → 1 ∈ 𝐷 )
15 f1ocnvfv1 ( ( 𝑃 : 𝐷1-1-onto𝐷 ∧ 1 ∈ 𝐷 ) → ( 𝑃 ‘ ( 𝑃 ‘ 1 ) ) = 1 )
16 9 14 15 syl2anc ( 𝐼𝐷 → ( 𝑃 ‘ ( 𝑃 ‘ 1 ) ) = 1 )
17 6 16 eqtr3d ( 𝐼𝐷 → ( 𝑃𝐼 ) = 1 )