| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfzto1st.d | ⊢ 𝐷  =  ( 1 ... 𝑁 ) | 
						
							| 2 |  | psgnfzto1st.p | ⊢ 𝑃  =  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 3 |  | psgnfzto1st.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 4 |  | psgnfzto1st.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 5 | 1 2 | fzto1stfv1 | ⊢ ( 𝐼  ∈  𝐷  →  ( 𝑃 ‘ 1 )  =  𝐼 ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝐼  ∈  𝐷  →  ( ◡ 𝑃 ‘ ( 𝑃 ‘ 1 ) )  =  ( ◡ 𝑃 ‘ 𝐼 ) ) | 
						
							| 7 | 1 2 3 4 | fzto1st | ⊢ ( 𝐼  ∈  𝐷  →  𝑃  ∈  𝐵 ) | 
						
							| 8 | 3 4 | symgbasf1o | ⊢ ( 𝑃  ∈  𝐵  →  𝑃 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐼  ∈  𝐷  →  𝑃 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 10 |  | elfzuz2 | ⊢ ( 𝐼  ∈  ( 1 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 11 | 10 1 | eleq2s | ⊢ ( 𝐼  ∈  𝐷  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 12 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 13 | 12 1 | eleqtrrdi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  𝐷 ) | 
						
							| 14 | 11 13 | syl | ⊢ ( 𝐼  ∈  𝐷  →  1  ∈  𝐷 ) | 
						
							| 15 |  | f1ocnvfv1 | ⊢ ( ( 𝑃 : 𝐷 –1-1-onto→ 𝐷  ∧  1  ∈  𝐷 )  →  ( ◡ 𝑃 ‘ ( 𝑃 ‘ 1 ) )  =  1 ) | 
						
							| 16 | 9 14 15 | syl2anc | ⊢ ( 𝐼  ∈  𝐷  →  ( ◡ 𝑃 ‘ ( 𝑃 ‘ 1 ) )  =  1 ) | 
						
							| 17 | 6 16 | eqtr3d | ⊢ ( 𝐼  ∈  𝐷  →  ( ◡ 𝑃 ‘ 𝐼 )  =  1 ) |