| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfzto1st.d |  |-  D = ( 1 ... N ) | 
						
							| 2 |  | psgnfzto1st.p |  |-  P = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) | 
						
							| 3 |  | psgnfzto1st.g |  |-  G = ( SymGrp ` D ) | 
						
							| 4 |  | psgnfzto1st.b |  |-  B = ( Base ` G ) | 
						
							| 5 | 1 2 | fzto1stfv1 |  |-  ( I e. D -> ( P ` 1 ) = I ) | 
						
							| 6 | 5 | fveq2d |  |-  ( I e. D -> ( `' P ` ( P ` 1 ) ) = ( `' P ` I ) ) | 
						
							| 7 | 1 2 3 4 | fzto1st |  |-  ( I e. D -> P e. B ) | 
						
							| 8 | 3 4 | symgbasf1o |  |-  ( P e. B -> P : D -1-1-onto-> D ) | 
						
							| 9 | 7 8 | syl |  |-  ( I e. D -> P : D -1-1-onto-> D ) | 
						
							| 10 |  | elfzuz2 |  |-  ( I e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 11 | 10 1 | eleq2s |  |-  ( I e. D -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 12 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 13 | 12 1 | eleqtrrdi |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. D ) | 
						
							| 14 | 11 13 | syl |  |-  ( I e. D -> 1 e. D ) | 
						
							| 15 |  | f1ocnvfv1 |  |-  ( ( P : D -1-1-onto-> D /\ 1 e. D ) -> ( `' P ` ( P ` 1 ) ) = 1 ) | 
						
							| 16 | 9 14 15 | syl2anc |  |-  ( I e. D -> ( `' P ` ( P ` 1 ) ) = 1 ) | 
						
							| 17 | 6 16 | eqtr3d |  |-  ( I e. D -> ( `' P ` I ) = 1 ) |