Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfzto1st.d |
|- D = ( 1 ... N ) |
2 |
|
psgnfzto1st.p |
|- P = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) |
3 |
|
psgnfzto1st.g |
|- G = ( SymGrp ` D ) |
4 |
|
psgnfzto1st.b |
|- B = ( Base ` G ) |
5 |
1 2
|
fzto1stfv1 |
|- ( I e. D -> ( P ` 1 ) = I ) |
6 |
5
|
fveq2d |
|- ( I e. D -> ( `' P ` ( P ` 1 ) ) = ( `' P ` I ) ) |
7 |
1 2 3 4
|
fzto1st |
|- ( I e. D -> P e. B ) |
8 |
3 4
|
symgbasf1o |
|- ( P e. B -> P : D -1-1-onto-> D ) |
9 |
7 8
|
syl |
|- ( I e. D -> P : D -1-1-onto-> D ) |
10 |
|
elfzuz2 |
|- ( I e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) |
11 |
10 1
|
eleq2s |
|- ( I e. D -> N e. ( ZZ>= ` 1 ) ) |
12 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
13 |
12 1
|
eleqtrrdi |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. D ) |
14 |
11 13
|
syl |
|- ( I e. D -> 1 e. D ) |
15 |
|
f1ocnvfv1 |
|- ( ( P : D -1-1-onto-> D /\ 1 e. D ) -> ( `' P ` ( P ` 1 ) ) = 1 ) |
16 |
9 14 15
|
syl2anc |
|- ( I e. D -> ( `' P ` ( P ` 1 ) ) = 1 ) |
17 |
6 16
|
eqtr3d |
|- ( I e. D -> ( `' P ` I ) = 1 ) |