Metamath Proof Explorer


Theorem fzto1stinvn

Description: Value of the inverse of our permutation P at I . (Contributed by Thierry Arnoux, 23-Aug-2020)

Ref Expression
Hypotheses psgnfzto1st.d
|- D = ( 1 ... N )
psgnfzto1st.p
|- P = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) )
psgnfzto1st.g
|- G = ( SymGrp ` D )
psgnfzto1st.b
|- B = ( Base ` G )
Assertion fzto1stinvn
|- ( I e. D -> ( `' P ` I ) = 1 )

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d
 |-  D = ( 1 ... N )
2 psgnfzto1st.p
 |-  P = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) )
3 psgnfzto1st.g
 |-  G = ( SymGrp ` D )
4 psgnfzto1st.b
 |-  B = ( Base ` G )
5 1 2 fzto1stfv1
 |-  ( I e. D -> ( P ` 1 ) = I )
6 5 fveq2d
 |-  ( I e. D -> ( `' P ` ( P ` 1 ) ) = ( `' P ` I ) )
7 1 2 3 4 fzto1st
 |-  ( I e. D -> P e. B )
8 3 4 symgbasf1o
 |-  ( P e. B -> P : D -1-1-onto-> D )
9 7 8 syl
 |-  ( I e. D -> P : D -1-1-onto-> D )
10 elfzuz2
 |-  ( I e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) )
11 10 1 eleq2s
 |-  ( I e. D -> N e. ( ZZ>= ` 1 ) )
12 eluzfz1
 |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) )
13 12 1 eleqtrrdi
 |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. D )
14 11 13 syl
 |-  ( I e. D -> 1 e. D )
15 f1ocnvfv1
 |-  ( ( P : D -1-1-onto-> D /\ 1 e. D ) -> ( `' P ` ( P ` 1 ) ) = 1 )
16 9 14 15 syl2anc
 |-  ( I e. D -> ( `' P ` ( P ` 1 ) ) = 1 )
17 6 16 eqtr3d
 |-  ( I e. D -> ( `' P ` I ) = 1 )