| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfzto1st.d |  |-  D = ( 1 ... N ) | 
						
							| 2 |  | psgnfzto1st.p |  |-  P = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) | 
						
							| 3 |  | iftrue |  |-  ( i = 1 -> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) = I ) | 
						
							| 4 |  | elfzuz2 |  |-  ( I e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 5 | 4 1 | eleq2s |  |-  ( I e. D -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 6 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 7 | 6 1 | eleqtrrdi |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. D ) | 
						
							| 8 | 5 7 | syl |  |-  ( I e. D -> 1 e. D ) | 
						
							| 9 |  | id |  |-  ( I e. D -> I e. D ) | 
						
							| 10 | 2 3 8 9 | fvmptd3 |  |-  ( I e. D -> ( P ` 1 ) = I ) |