Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfzto1st.d |
|- D = ( 1 ... N ) |
2 |
|
psgnfzto1st.p |
|- P = ( i e. D |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) |
3 |
|
iftrue |
|- ( i = 1 -> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) = I ) |
4 |
|
elfzuz2 |
|- ( I e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) |
5 |
4 1
|
eleq2s |
|- ( I e. D -> N e. ( ZZ>= ` 1 ) ) |
6 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
7 |
6 1
|
eleqtrrdi |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. D ) |
8 |
5 7
|
syl |
|- ( I e. D -> 1 e. D ) |
9 |
|
id |
|- ( I e. D -> I e. D ) |
10 |
2 3 8 9
|
fvmptd3 |
|- ( I e. D -> ( P ` 1 ) = I ) |