| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfzto1st.d | ⊢ 𝐷  =  ( 1 ... 𝑁 ) | 
						
							| 2 |  | psgnfzto1st.p | ⊢ 𝑃  =  ( 𝑖  ∈  𝐷  ↦  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 3 |  | iftrue | ⊢ ( 𝑖  =  1  →  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) )  =  𝐼 ) | 
						
							| 4 |  | elfzuz2 | ⊢ ( 𝐼  ∈  ( 1 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 5 | 4 1 | eleq2s | ⊢ ( 𝐼  ∈  𝐷  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 6 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 7 | 6 1 | eleqtrrdi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  𝐷 ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝐼  ∈  𝐷  →  1  ∈  𝐷 ) | 
						
							| 9 |  | id | ⊢ ( 𝐼  ∈  𝐷  →  𝐼  ∈  𝐷 ) | 
						
							| 10 | 2 3 8 9 | fvmptd3 | ⊢ ( 𝐼  ∈  𝐷  →  ( 𝑃 ‘ 1 )  =  𝐼 ) |