Metamath Proof Explorer


Theorem fzto1stfv1

Description: Value of our permutation P at 1. (Contributed by Thierry Arnoux, 23-Aug-2020)

Ref Expression
Hypotheses psgnfzto1st.d D = 1 N
psgnfzto1st.p P = i D if i = 1 I if i I i 1 i
Assertion fzto1stfv1 I D P 1 = I

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d D = 1 N
2 psgnfzto1st.p P = i D if i = 1 I if i I i 1 i
3 iftrue i = 1 if i = 1 I if i I i 1 i = I
4 elfzuz2 I 1 N N 1
5 4 1 eleq2s I D N 1
6 eluzfz1 N 1 1 1 N
7 6 1 eleqtrrdi N 1 1 D
8 5 7 syl I D 1 D
9 id I D I D
10 2 3 8 9 fvmptd3 I D P 1 = I