Metamath Proof Explorer


Theorem psgnfzto1st

Description: The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020)

Ref Expression
Hypotheses psgnfzto1st.d 𝐷 = ( 1 ... 𝑁 )
psgnfzto1st.p 𝑃 = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) )
psgnfzto1st.g 𝐺 = ( SymGrp ‘ 𝐷 )
psgnfzto1st.b 𝐵 = ( Base ‘ 𝐺 )
psgnfzto1st.s 𝑆 = ( pmSgn ‘ 𝐷 )
Assertion psgnfzto1st ( 𝐼𝐷 → ( 𝑆𝑃 ) = ( - 1 ↑ ( 𝐼 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d 𝐷 = ( 1 ... 𝑁 )
2 psgnfzto1st.p 𝑃 = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) )
3 psgnfzto1st.g 𝐺 = ( SymGrp ‘ 𝐷 )
4 psgnfzto1st.b 𝐵 = ( Base ‘ 𝐺 )
5 psgnfzto1st.s 𝑆 = ( pmSgn ‘ 𝐷 )
6 elfz1b ( 𝐼 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁 ) )
7 6 biimpi ( 𝐼 ∈ ( 1 ... 𝑁 ) → ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁 ) )
8 7 1 eleq2s ( 𝐼𝐷 → ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁 ) )
9 3ancoma ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁 ) ↔ ( 𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁 ) )
10 8 9 sylibr ( 𝐼𝐷 → ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁 ) )
11 df-3an ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁 ) ↔ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ) ∧ 𝐼𝑁 ) )
12 breq1 ( 𝑚 = 1 → ( 𝑚𝑁 ↔ 1 ≤ 𝑁 ) )
13 id ( 𝑚 = 1 → 𝑚 = 1 )
14 breq2 ( 𝑚 = 1 → ( 𝑖𝑚𝑖 ≤ 1 ) )
15 14 ifbid ( 𝑚 = 1 → if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) = if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) )
16 13 15 ifeq12d ( 𝑚 = 1 → if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) = if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) )
17 16 mpteq2dv ( 𝑚 = 1 → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) )
18 17 fveq2d ( 𝑚 = 1 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) )
19 oveq1 ( 𝑚 = 1 → ( 𝑚 + 1 ) = ( 1 + 1 ) )
20 19 oveq2d ( 𝑚 = 1 → ( - 1 ↑ ( 𝑚 + 1 ) ) = ( - 1 ↑ ( 1 + 1 ) ) )
21 18 20 eqeq12d ( 𝑚 = 1 → ( ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ↔ ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 1 + 1 ) ) ) )
22 12 21 imbi12d ( 𝑚 = 1 → ( ( 𝑚𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ) ↔ ( 1 ≤ 𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 1 + 1 ) ) ) ) )
23 breq1 ( 𝑚 = 𝑛 → ( 𝑚𝑁𝑛𝑁 ) )
24 id ( 𝑚 = 𝑛𝑚 = 𝑛 )
25 breq2 ( 𝑚 = 𝑛 → ( 𝑖𝑚𝑖𝑛 ) )
26 25 ifbid ( 𝑚 = 𝑛 → if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) = if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) )
27 24 26 ifeq12d ( 𝑚 = 𝑛 → if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) = if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) )
28 27 mpteq2dv ( 𝑚 = 𝑛 → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) )
29 28 fveq2d ( 𝑚 = 𝑛 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) )
30 oveq1 ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) )
31 30 oveq2d ( 𝑚 = 𝑛 → ( - 1 ↑ ( 𝑚 + 1 ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) )
32 29 31 eqeq12d ( 𝑚 = 𝑛 → ( ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ↔ ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) )
33 23 32 imbi12d ( 𝑚 = 𝑛 → ( ( 𝑚𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ) ↔ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) )
34 breq1 ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚𝑁 ↔ ( 𝑛 + 1 ) ≤ 𝑁 ) )
35 id ( 𝑚 = ( 𝑛 + 1 ) → 𝑚 = ( 𝑛 + 1 ) )
36 breq2 ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑖𝑚𝑖 ≤ ( 𝑛 + 1 ) ) )
37 36 ifbid ( 𝑚 = ( 𝑛 + 1 ) → if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) = if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) )
38 35 37 ifeq12d ( 𝑚 = ( 𝑛 + 1 ) → if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) = if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) )
39 38 mpteq2dv ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) )
40 39 fveq2d ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) )
41 oveq1 ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 + 1 ) = ( ( 𝑛 + 1 ) + 1 ) )
42 41 oveq2d ( 𝑚 = ( 𝑛 + 1 ) → ( - 1 ↑ ( 𝑚 + 1 ) ) = ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) )
43 40 42 eqeq12d ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ↔ ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) ) )
44 34 43 imbi12d ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑚𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ) ↔ ( ( 𝑛 + 1 ) ≤ 𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) ) ) )
45 breq1 ( 𝑚 = 𝐼 → ( 𝑚𝑁𝐼𝑁 ) )
46 id ( 𝑚 = 𝐼𝑚 = 𝐼 )
47 breq2 ( 𝑚 = 𝐼 → ( 𝑖𝑚𝑖𝐼 ) )
48 47 ifbid ( 𝑚 = 𝐼 → if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) = if ( 𝑖𝐼 , ( 𝑖 − 1 ) , 𝑖 ) )
49 46 48 ifeq12d ( 𝑚 = 𝐼 → if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) = if ( 𝑖 = 1 , 𝐼 , if ( 𝑖𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) )
50 49 mpteq2dv ( 𝑚 = 𝐼 → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) ) )
51 50 2 eqtr4di ( 𝑚 = 𝐼 → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = 𝑃 )
52 51 fveq2d ( 𝑚 = 𝐼 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( 𝑆𝑃 ) )
53 oveq1 ( 𝑚 = 𝐼 → ( 𝑚 + 1 ) = ( 𝐼 + 1 ) )
54 53 oveq2d ( 𝑚 = 𝐼 → ( - 1 ↑ ( 𝑚 + 1 ) ) = ( - 1 ↑ ( 𝐼 + 1 ) ) )
55 52 54 eqeq12d ( 𝑚 = 𝐼 → ( ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ↔ ( 𝑆𝑃 ) = ( - 1 ↑ ( 𝐼 + 1 ) ) ) )
56 45 55 imbi12d ( 𝑚 = 𝐼 → ( ( 𝑚𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑚 , if ( 𝑖𝑚 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑚 + 1 ) ) ) ↔ ( 𝐼𝑁 → ( 𝑆𝑃 ) = ( - 1 ↑ ( 𝐼 + 1 ) ) ) ) )
57 fzfi ( 1 ... 𝑁 ) ∈ Fin
58 1 57 eqeltri 𝐷 ∈ Fin
59 5 psgnid ( 𝐷 ∈ Fin → ( 𝑆 ‘ ( I ↾ 𝐷 ) ) = 1 )
60 58 59 ax-mp ( 𝑆 ‘ ( I ↾ 𝐷 ) ) = 1
61 eqid 1 = 1
62 eqid ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) )
63 1 62 fzto1st1 ( 1 = 1 → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( I ↾ 𝐷 ) )
64 61 63 ax-mp ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( I ↾ 𝐷 )
65 64 fveq2i ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( 𝑆 ‘ ( I ↾ 𝐷 ) )
66 1p1e2 ( 1 + 1 ) = 2
67 66 oveq2i ( - 1 ↑ ( 1 + 1 ) ) = ( - 1 ↑ 2 )
68 neg1sqe1 ( - 1 ↑ 2 ) = 1
69 67 68 eqtri ( - 1 ↑ ( 1 + 1 ) ) = 1
70 60 65 69 3eqtr4i ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 1 + 1 ) )
71 70 2a1i ( 𝑁 ∈ ℕ → ( 1 ≤ 𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 1 , if ( 𝑖 ≤ 1 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 1 + 1 ) ) ) )
72 simplr ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑛 ∈ ℕ )
73 72 peano2nnd ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑛 + 1 ) ∈ ℕ )
74 simpll ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑁 ∈ ℕ )
75 simpr ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑛 + 1 ) ≤ 𝑁 )
76 73 74 75 3jca ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( ( 𝑛 + 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) )
77 elfz1b ( ( 𝑛 + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑛 + 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) )
78 76 77 sylibr ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 1 ... 𝑁 ) )
79 78 1 eleqtrrdi ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑛 + 1 ) ∈ 𝐷 )
80 1 psgnfzto1stlem ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ 𝐷 ) → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) )
81 72 79 80 syl2anc ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) )
82 81 adantlr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) )
83 82 fveq2d ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( 𝑆 ‘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) ) )
84 58 a1i ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝐷 ∈ Fin )
85 eqid ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ 𝐷 )
86 85 3 4 symgtrf ran ( pmTrsp ‘ 𝐷 ) ⊆ 𝐵
87 eqid ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 )
88 1 87 pmtrto1cl ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ 𝐷 ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) )
89 72 79 88 syl2anc ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) )
90 89 adantlr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) )
91 86 90 sselid ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∈ 𝐵 )
92 72 nnred ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑛 ∈ ℝ )
93 1red ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 1 ∈ ℝ )
94 92 93 readdcld ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑛 + 1 ) ∈ ℝ )
95 74 nnred ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑁 ∈ ℝ )
96 92 lep1d ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑛 ≤ ( 𝑛 + 1 ) )
97 92 94 95 96 75 letrd ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑛𝑁 )
98 72 74 97 3jca ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁 ) )
99 elfz1b ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁 ) )
100 98 99 sylibr ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑛 ∈ ( 1 ... 𝑁 ) )
101 100 1 eleqtrrdi ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑛𝐷 )
102 101 adantlr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑛𝐷 )
103 eqid ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) = ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) )
104 1 103 3 4 fzto1st ( 𝑛𝐷 → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ∈ 𝐵 )
105 102 104 syl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ∈ 𝐵 )
106 3 5 4 psgnco ( ( 𝐷 ∈ Fin ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∈ 𝐵 ∧ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ∈ 𝐵 ) → ( 𝑆 ‘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) ) = ( ( 𝑆 ‘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ) · ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) ) )
107 84 91 105 106 syl3anc ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑆 ‘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) ) = ( ( 𝑆 ‘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ) · ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) ) )
108 3 85 5 psgnpmtr ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) → ( 𝑆 ‘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ) = - 1 )
109 89 108 syl ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑆 ‘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ) = - 1 )
110 109 adantlr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑆 ‘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ) = - 1 )
111 97 adantlr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → 𝑛𝑁 )
112 simplr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) )
113 111 112 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) )
114 110 113 oveq12d ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( ( 𝑆 ‘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ) · ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) ) = ( - 1 · ( - 1 ↑ ( 𝑛 + 1 ) ) ) )
115 neg1cn - 1 ∈ ℂ
116 peano2nn ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ )
117 116 nnnn0d ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ0 )
118 expp1 ( ( - 1 ∈ ℂ ∧ ( 𝑛 + 1 ) ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) = ( ( - 1 ↑ ( 𝑛 + 1 ) ) · - 1 ) )
119 115 117 118 sylancr ( 𝑛 ∈ ℕ → ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) = ( ( - 1 ↑ ( 𝑛 + 1 ) ) · - 1 ) )
120 115 a1i ( 𝑛 ∈ ℕ → - 1 ∈ ℂ )
121 120 117 expcld ( 𝑛 ∈ ℕ → ( - 1 ↑ ( 𝑛 + 1 ) ) ∈ ℂ )
122 121 120 mulcomd ( 𝑛 ∈ ℕ → ( ( - 1 ↑ ( 𝑛 + 1 ) ) · - 1 ) = ( - 1 · ( - 1 ↑ ( 𝑛 + 1 ) ) ) )
123 119 122 eqtr2d ( 𝑛 ∈ ℕ → ( - 1 · ( - 1 ↑ ( 𝑛 + 1 ) ) ) = ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) )
124 123 ad3antlr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( - 1 · ( - 1 ↑ ( 𝑛 + 1 ) ) ) = ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) )
125 114 124 eqtrd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( ( 𝑆 ‘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑛 , ( 𝑛 + 1 ) } ) ) · ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) ) = ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) )
126 83 107 125 3eqtrd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) ∧ ( 𝑛 + 1 ) ≤ 𝑁 ) → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) )
127 126 ex ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , 𝑛 , if ( 𝑖𝑛 , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( 𝑛 + 1 ) ) ) ) → ( ( 𝑛 + 1 ) ≤ 𝑁 → ( 𝑆 ‘ ( 𝑖𝐷 ↦ if ( 𝑖 = 1 , ( 𝑛 + 1 ) , if ( 𝑖 ≤ ( 𝑛 + 1 ) , ( 𝑖 − 1 ) , 𝑖 ) ) ) ) = ( - 1 ↑ ( ( 𝑛 + 1 ) + 1 ) ) ) )
128 22 33 44 56 71 127 nnindd ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ) → ( 𝐼𝑁 → ( 𝑆𝑃 ) = ( - 1 ↑ ( 𝐼 + 1 ) ) ) )
129 128 imp ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ) ∧ 𝐼𝑁 ) → ( 𝑆𝑃 ) = ( - 1 ↑ ( 𝐼 + 1 ) ) )
130 11 129 sylbi ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁 ) → ( 𝑆𝑃 ) = ( - 1 ↑ ( 𝐼 + 1 ) ) )
131 10 130 syl ( 𝐼𝐷 → ( 𝑆𝑃 ) = ( - 1 ↑ ( 𝐼 + 1 ) ) )