Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfzto1st.d |
|
2 |
|
psgnfzto1st.p |
|
3 |
|
psgnfzto1st.g |
|
4 |
|
psgnfzto1st.b |
|
5 |
|
psgnfzto1st.s |
|
6 |
|
elfz1b |
|
7 |
6
|
biimpi |
|
8 |
7 1
|
eleq2s |
|
9 |
|
3ancoma |
|
10 |
8 9
|
sylibr |
|
11 |
|
df-3an |
|
12 |
|
breq1 |
|
13 |
|
id |
|
14 |
|
breq2 |
|
15 |
14
|
ifbid |
|
16 |
13 15
|
ifeq12d |
|
17 |
16
|
mpteq2dv |
|
18 |
17
|
fveq2d |
|
19 |
|
oveq1 |
|
20 |
19
|
oveq2d |
|
21 |
18 20
|
eqeq12d |
|
22 |
12 21
|
imbi12d |
|
23 |
|
breq1 |
|
24 |
|
id |
|
25 |
|
breq2 |
|
26 |
25
|
ifbid |
|
27 |
24 26
|
ifeq12d |
|
28 |
27
|
mpteq2dv |
|
29 |
28
|
fveq2d |
|
30 |
|
oveq1 |
|
31 |
30
|
oveq2d |
|
32 |
29 31
|
eqeq12d |
|
33 |
23 32
|
imbi12d |
|
34 |
|
breq1 |
|
35 |
|
id |
|
36 |
|
breq2 |
|
37 |
36
|
ifbid |
|
38 |
35 37
|
ifeq12d |
|
39 |
38
|
mpteq2dv |
|
40 |
39
|
fveq2d |
|
41 |
|
oveq1 |
|
42 |
41
|
oveq2d |
|
43 |
40 42
|
eqeq12d |
|
44 |
34 43
|
imbi12d |
|
45 |
|
breq1 |
|
46 |
|
id |
|
47 |
|
breq2 |
|
48 |
47
|
ifbid |
|
49 |
46 48
|
ifeq12d |
|
50 |
49
|
mpteq2dv |
|
51 |
50 2
|
eqtr4di |
|
52 |
51
|
fveq2d |
|
53 |
|
oveq1 |
|
54 |
53
|
oveq2d |
|
55 |
52 54
|
eqeq12d |
|
56 |
45 55
|
imbi12d |
|
57 |
|
fzfi |
|
58 |
1 57
|
eqeltri |
|
59 |
5
|
psgnid |
|
60 |
58 59
|
ax-mp |
|
61 |
|
eqid |
|
62 |
|
eqid |
|
63 |
1 62
|
fzto1st1 |
|
64 |
61 63
|
ax-mp |
|
65 |
64
|
fveq2i |
|
66 |
|
1p1e2 |
|
67 |
66
|
oveq2i |
|
68 |
|
neg1sqe1 |
|
69 |
67 68
|
eqtri |
|
70 |
60 65 69
|
3eqtr4i |
|
71 |
70
|
2a1i |
|
72 |
|
simplr |
|
73 |
72
|
peano2nnd |
|
74 |
|
simpll |
|
75 |
|
simpr |
|
76 |
73 74 75
|
3jca |
|
77 |
|
elfz1b |
|
78 |
76 77
|
sylibr |
|
79 |
78 1
|
eleqtrrdi |
|
80 |
1
|
psgnfzto1stlem |
|
81 |
72 79 80
|
syl2anc |
|
82 |
81
|
adantlr |
|
83 |
82
|
fveq2d |
|
84 |
58
|
a1i |
|
85 |
|
eqid |
|
86 |
85 3 4
|
symgtrf |
|
87 |
|
eqid |
|
88 |
1 87
|
pmtrto1cl |
|
89 |
72 79 88
|
syl2anc |
|
90 |
89
|
adantlr |
|
91 |
86 90
|
sselid |
|
92 |
72
|
nnred |
|
93 |
|
1red |
|
94 |
92 93
|
readdcld |
|
95 |
74
|
nnred |
|
96 |
92
|
lep1d |
|
97 |
92 94 95 96 75
|
letrd |
|
98 |
72 74 97
|
3jca |
|
99 |
|
elfz1b |
|
100 |
98 99
|
sylibr |
|
101 |
100 1
|
eleqtrrdi |
|
102 |
101
|
adantlr |
|
103 |
|
eqid |
|
104 |
1 103 3 4
|
fzto1st |
|
105 |
102 104
|
syl |
|
106 |
3 5 4
|
psgnco |
|
107 |
84 91 105 106
|
syl3anc |
|
108 |
3 85 5
|
psgnpmtr |
|
109 |
89 108
|
syl |
|
110 |
109
|
adantlr |
|
111 |
97
|
adantlr |
|
112 |
|
simplr |
|
113 |
111 112
|
mpd |
|
114 |
110 113
|
oveq12d |
|
115 |
|
neg1cn |
|
116 |
|
peano2nn |
|
117 |
116
|
nnnn0d |
|
118 |
|
expp1 |
|
119 |
115 117 118
|
sylancr |
|
120 |
115
|
a1i |
|
121 |
120 117
|
expcld |
|
122 |
121 120
|
mulcomd |
|
123 |
119 122
|
eqtr2d |
|
124 |
123
|
ad3antlr |
|
125 |
114 124
|
eqtrd |
|
126 |
83 107 125
|
3eqtrd |
|
127 |
126
|
ex |
|
128 |
22 33 44 56 71 127
|
nnindd |
|
129 |
128
|
imp |
|
130 |
11 129
|
sylbi |
|
131 |
10 130
|
syl |
|