Description: The Gamma function is the inverse of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gamigam | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) = ( 1 / ( 1/_G ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | igamgam | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( 1/_G ` A ) = ( 1 / ( _G ` A ) ) ) |
|
| 2 | 1 | oveq2d | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( 1 / ( 1/_G ` A ) ) = ( 1 / ( 1 / ( _G ` A ) ) ) ) |
| 3 | gamcl | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) e. CC ) |
|
| 4 | gamne0 | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) =/= 0 ) |
|
| 5 | 3 4 | recrecd | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( 1 / ( 1 / ( _G ` A ) ) ) = ( _G ` A ) ) |
| 6 | 2 5 | eqtr2d | |- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) = ( 1 / ( 1/_G ` A ) ) ) |