Metamath Proof Explorer


Theorem gamigam

Description: The Gamma function is the inverse of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)

Ref Expression
Assertion gamigam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) = ( 1 / ( 1/Γ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 igamgam ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) )
2 1 oveq2d ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1 / ( 1/Γ ‘ 𝐴 ) ) = ( 1 / ( 1 / ( Γ ‘ 𝐴 ) ) ) )
3 gamcl ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) ∈ ℂ )
4 gamne0 ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) ≠ 0 )
5 3 4 recrecd ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1 / ( 1 / ( Γ ‘ 𝐴 ) ) ) = ( Γ ‘ 𝐴 ) )
6 2 5 eqtr2d ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) = ( 1 / ( 1/Γ ‘ 𝐴 ) ) )