Description: The Gamma function is the inverse of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | gamigam | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) = ( 1 / ( 1/Γ ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | igamgam | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1/Γ ‘ 𝐴 ) = ( 1 / ( Γ ‘ 𝐴 ) ) ) | |
2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1 / ( 1/Γ ‘ 𝐴 ) ) = ( 1 / ( 1 / ( Γ ‘ 𝐴 ) ) ) ) |
3 | gamcl | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) ∈ ℂ ) | |
4 | gamne0 | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) ≠ 0 ) | |
5 | 3 4 | recrecd | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( 1 / ( 1 / ( Γ ‘ 𝐴 ) ) ) = ( Γ ‘ 𝐴 ) ) |
6 | 2 5 | eqtr2d | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( Γ ‘ 𝐴 ) = ( 1 / ( 1/Γ ‘ 𝐴 ) ) ) |