| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( GCH = _V /\ x e. On ) -> x e. On ) |
| 2 |
|
fvex |
|- ( aleph ` x ) e. _V |
| 3 |
|
simpl |
|- ( ( GCH = _V /\ x e. On ) -> GCH = _V ) |
| 4 |
2 3
|
eleqtrrid |
|- ( ( GCH = _V /\ x e. On ) -> ( aleph ` x ) e. GCH ) |
| 5 |
|
fvex |
|- ( aleph ` suc x ) e. _V |
| 6 |
5 3
|
eleqtrrid |
|- ( ( GCH = _V /\ x e. On ) -> ( aleph ` suc x ) e. GCH ) |
| 7 |
|
gchaleph2 |
|- ( ( x e. On /\ ( aleph ` x ) e. GCH /\ ( aleph ` suc x ) e. GCH ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
| 8 |
1 4 6 7
|
syl3anc |
|- ( ( GCH = _V /\ x e. On ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
| 9 |
8
|
ralrimiva |
|- ( GCH = _V -> A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
| 10 |
|
alephgch |
|- ( ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> ( aleph ` x ) e. GCH ) |
| 11 |
10
|
ralimi |
|- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> A. x e. On ( aleph ` x ) e. GCH ) |
| 12 |
|
alephfnon |
|- aleph Fn On |
| 13 |
|
ffnfv |
|- ( aleph : On --> GCH <-> ( aleph Fn On /\ A. x e. On ( aleph ` x ) e. GCH ) ) |
| 14 |
12 13
|
mpbiran |
|- ( aleph : On --> GCH <-> A. x e. On ( aleph ` x ) e. GCH ) |
| 15 |
11 14
|
sylibr |
|- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> aleph : On --> GCH ) |
| 16 |
15
|
frnd |
|- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> ran aleph C_ GCH ) |
| 17 |
|
gch2 |
|- ( GCH = _V <-> ran aleph C_ GCH ) |
| 18 |
16 17
|
sylibr |
|- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> GCH = _V ) |
| 19 |
9 18
|
impbii |
|- ( GCH = _V <-> A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |