Step |
Hyp |
Ref |
Expression |
1 |
|
ssv |
|- ran aleph C_ _V |
2 |
|
sseq2 |
|- ( GCH = _V -> ( ran aleph C_ GCH <-> ran aleph C_ _V ) ) |
3 |
1 2
|
mpbiri |
|- ( GCH = _V -> ran aleph C_ GCH ) |
4 |
|
cardidm |
|- ( card ` ( card ` x ) ) = ( card ` x ) |
5 |
|
iscard3 |
|- ( ( card ` ( card ` x ) ) = ( card ` x ) <-> ( card ` x ) e. ( _om u. ran aleph ) ) |
6 |
4 5
|
mpbi |
|- ( card ` x ) e. ( _om u. ran aleph ) |
7 |
|
elun |
|- ( ( card ` x ) e. ( _om u. ran aleph ) <-> ( ( card ` x ) e. _om \/ ( card ` x ) e. ran aleph ) ) |
8 |
6 7
|
mpbi |
|- ( ( card ` x ) e. _om \/ ( card ` x ) e. ran aleph ) |
9 |
|
fingch |
|- Fin C_ GCH |
10 |
|
nnfi |
|- ( ( card ` x ) e. _om -> ( card ` x ) e. Fin ) |
11 |
9 10
|
sselid |
|- ( ( card ` x ) e. _om -> ( card ` x ) e. GCH ) |
12 |
11
|
a1i |
|- ( ran aleph C_ GCH -> ( ( card ` x ) e. _om -> ( card ` x ) e. GCH ) ) |
13 |
|
ssel |
|- ( ran aleph C_ GCH -> ( ( card ` x ) e. ran aleph -> ( card ` x ) e. GCH ) ) |
14 |
12 13
|
jaod |
|- ( ran aleph C_ GCH -> ( ( ( card ` x ) e. _om \/ ( card ` x ) e. ran aleph ) -> ( card ` x ) e. GCH ) ) |
15 |
8 14
|
mpi |
|- ( ran aleph C_ GCH -> ( card ` x ) e. GCH ) |
16 |
|
vex |
|- x e. _V |
17 |
|
alephon |
|- ( aleph ` suc x ) e. On |
18 |
|
simpr |
|- ( ( ran aleph C_ GCH /\ x e. On ) -> x e. On ) |
19 |
|
simpl |
|- ( ( ran aleph C_ GCH /\ x e. On ) -> ran aleph C_ GCH ) |
20 |
|
alephfnon |
|- aleph Fn On |
21 |
|
fnfvelrn |
|- ( ( aleph Fn On /\ x e. On ) -> ( aleph ` x ) e. ran aleph ) |
22 |
20 18 21
|
sylancr |
|- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` x ) e. ran aleph ) |
23 |
19 22
|
sseldd |
|- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` x ) e. GCH ) |
24 |
|
suceloni |
|- ( x e. On -> suc x e. On ) |
25 |
24
|
adantl |
|- ( ( ran aleph C_ GCH /\ x e. On ) -> suc x e. On ) |
26 |
|
fnfvelrn |
|- ( ( aleph Fn On /\ suc x e. On ) -> ( aleph ` suc x ) e. ran aleph ) |
27 |
20 25 26
|
sylancr |
|- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` suc x ) e. ran aleph ) |
28 |
19 27
|
sseldd |
|- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` suc x ) e. GCH ) |
29 |
|
gchaleph2 |
|- ( ( x e. On /\ ( aleph ` x ) e. GCH /\ ( aleph ` suc x ) e. GCH ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
30 |
18 23 28 29
|
syl3anc |
|- ( ( ran aleph C_ GCH /\ x e. On ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
31 |
|
isnumi |
|- ( ( ( aleph ` suc x ) e. On /\ ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) -> ~P ( aleph ` x ) e. dom card ) |
32 |
17 30 31
|
sylancr |
|- ( ( ran aleph C_ GCH /\ x e. On ) -> ~P ( aleph ` x ) e. dom card ) |
33 |
32
|
ralrimiva |
|- ( ran aleph C_ GCH -> A. x e. On ~P ( aleph ` x ) e. dom card ) |
34 |
|
dfac12 |
|- ( CHOICE <-> A. x e. On ~P ( aleph ` x ) e. dom card ) |
35 |
33 34
|
sylibr |
|- ( ran aleph C_ GCH -> CHOICE ) |
36 |
|
dfac10 |
|- ( CHOICE <-> dom card = _V ) |
37 |
35 36
|
sylib |
|- ( ran aleph C_ GCH -> dom card = _V ) |
38 |
16 37
|
eleqtrrid |
|- ( ran aleph C_ GCH -> x e. dom card ) |
39 |
|
cardid2 |
|- ( x e. dom card -> ( card ` x ) ~~ x ) |
40 |
|
engch |
|- ( ( card ` x ) ~~ x -> ( ( card ` x ) e. GCH <-> x e. GCH ) ) |
41 |
38 39 40
|
3syl |
|- ( ran aleph C_ GCH -> ( ( card ` x ) e. GCH <-> x e. GCH ) ) |
42 |
15 41
|
mpbid |
|- ( ran aleph C_ GCH -> x e. GCH ) |
43 |
16
|
a1i |
|- ( ran aleph C_ GCH -> x e. _V ) |
44 |
42 43
|
2thd |
|- ( ran aleph C_ GCH -> ( x e. GCH <-> x e. _V ) ) |
45 |
44
|
eqrdv |
|- ( ran aleph C_ GCH -> GCH = _V ) |
46 |
3 45
|
impbii |
|- ( GCH = _V <-> ran aleph C_ GCH ) |