| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relsdom |
|- Rel ~< |
| 2 |
1
|
brrelex1i |
|- ( B ~< ~P A -> B e. _V ) |
| 3 |
2
|
adantl |
|- ( ( A ~< B /\ B ~< ~P A ) -> B e. _V ) |
| 4 |
|
breq2 |
|- ( x = B -> ( A ~< x <-> A ~< B ) ) |
| 5 |
|
breq1 |
|- ( x = B -> ( x ~< ~P A <-> B ~< ~P A ) ) |
| 6 |
4 5
|
anbi12d |
|- ( x = B -> ( ( A ~< x /\ x ~< ~P A ) <-> ( A ~< B /\ B ~< ~P A ) ) ) |
| 7 |
6
|
spcegv |
|- ( B e. _V -> ( ( A ~< B /\ B ~< ~P A ) -> E. x ( A ~< x /\ x ~< ~P A ) ) ) |
| 8 |
3 7
|
mpcom |
|- ( ( A ~< B /\ B ~< ~P A ) -> E. x ( A ~< x /\ x ~< ~P A ) ) |
| 9 |
|
df-ex |
|- ( E. x ( A ~< x /\ x ~< ~P A ) <-> -. A. x -. ( A ~< x /\ x ~< ~P A ) ) |
| 10 |
8 9
|
sylib |
|- ( ( A ~< B /\ B ~< ~P A ) -> -. A. x -. ( A ~< x /\ x ~< ~P A ) ) |
| 11 |
|
elgch |
|- ( A e. GCH -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
| 12 |
11
|
ibi |
|- ( A e. GCH -> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) |
| 13 |
12
|
orcomd |
|- ( A e. GCH -> ( A. x -. ( A ~< x /\ x ~< ~P A ) \/ A e. Fin ) ) |
| 14 |
13
|
ord |
|- ( A e. GCH -> ( -. A. x -. ( A ~< x /\ x ~< ~P A ) -> A e. Fin ) ) |
| 15 |
10 14
|
syl5 |
|- ( A e. GCH -> ( ( A ~< B /\ B ~< ~P A ) -> A e. Fin ) ) |
| 16 |
15
|
3impib |
|- ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |