Step |
Hyp |
Ref |
Expression |
1 |
|
df-gic |
|- ~=g = ( `' GrpIso " ( _V \ 1o ) ) |
2 |
|
cnvimass |
|- ( `' GrpIso " ( _V \ 1o ) ) C_ dom GrpIso |
3 |
|
gimfn |
|- GrpIso Fn ( Grp X. Grp ) |
4 |
3
|
fndmi |
|- dom GrpIso = ( Grp X. Grp ) |
5 |
2 4
|
sseqtri |
|- ( `' GrpIso " ( _V \ 1o ) ) C_ ( Grp X. Grp ) |
6 |
1 5
|
eqsstri |
|- ~=g C_ ( Grp X. Grp ) |
7 |
|
relxp |
|- Rel ( Grp X. Grp ) |
8 |
|
relss |
|- ( ~=g C_ ( Grp X. Grp ) -> ( Rel ( Grp X. Grp ) -> Rel ~=g ) ) |
9 |
6 7 8
|
mp2 |
|- Rel ~=g |
10 |
|
gicsym |
|- ( x ~=g y -> y ~=g x ) |
11 |
|
gictr |
|- ( ( x ~=g y /\ y ~=g z ) -> x ~=g z ) |
12 |
|
gicref |
|- ( x e. Grp -> x ~=g x ) |
13 |
|
giclcl |
|- ( x ~=g x -> x e. Grp ) |
14 |
12 13
|
impbii |
|- ( x e. Grp <-> x ~=g x ) |
15 |
9 10 11 14
|
iseri |
|- ~=g Er Grp |