Metamath Proof Explorer


Theorem gneispb

Description: Given a neighborhood N of P , each subset of the neighborhood space containing this neighborhood is also a neighborhood of P . Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021)

Ref Expression
Hypothesis gneispace.x
|- X = U. J
Assertion gneispb
|- ( ( J e. Top /\ P e. X /\ N e. ( ( nei ` J ) ` { P } ) ) -> A. s e. ~P X ( N C_ s -> s e. ( ( nei ` J ) ` { P } ) ) )

Proof

Step Hyp Ref Expression
1 gneispace.x
 |-  X = U. J
2 3simpb
 |-  ( ( J e. Top /\ P e. X /\ N e. ( ( nei ` J ) ` { P } ) ) -> ( J e. Top /\ N e. ( ( nei ` J ) ` { P } ) ) )
3 2 ad2antrr
 |-  ( ( ( ( J e. Top /\ P e. X /\ N e. ( ( nei ` J ) ` { P } ) ) /\ s e. ~P X ) /\ N C_ s ) -> ( J e. Top /\ N e. ( ( nei ` J ) ` { P } ) ) )
4 simpr
 |-  ( ( ( ( J e. Top /\ P e. X /\ N e. ( ( nei ` J ) ` { P } ) ) /\ s e. ~P X ) /\ N C_ s ) -> N C_ s )
5 simplr
 |-  ( ( ( ( J e. Top /\ P e. X /\ N e. ( ( nei ` J ) ` { P } ) ) /\ s e. ~P X ) /\ N C_ s ) -> s e. ~P X )
6 5 elpwid
 |-  ( ( ( ( J e. Top /\ P e. X /\ N e. ( ( nei ` J ) ` { P } ) ) /\ s e. ~P X ) /\ N C_ s ) -> s C_ X )
7 1 ssnei2
 |-  ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` { P } ) ) /\ ( N C_ s /\ s C_ X ) ) -> s e. ( ( nei ` J ) ` { P } ) )
8 3 4 6 7 syl12anc
 |-  ( ( ( ( J e. Top /\ P e. X /\ N e. ( ( nei ` J ) ` { P } ) ) /\ s e. ~P X ) /\ N C_ s ) -> s e. ( ( nei ` J ) ` { P } ) )
9 8 exp31
 |-  ( ( J e. Top /\ P e. X /\ N e. ( ( nei ` J ) ` { P } ) ) -> ( s e. ~P X -> ( N C_ s -> s e. ( ( nei ` J ) ` { P } ) ) ) )
10 9 ralrimiv
 |-  ( ( J e. Top /\ P e. X /\ N e. ( ( nei ` J ) ` { P } ) ) -> A. s e. ~P X ( N C_ s -> s e. ( ( nei ` J ) ` { P } ) ) )