Metamath Proof Explorer


Theorem gneispb

Description: Given a neighborhood N of P , each subset of the neighborhood space containing this neighborhood is also a neighborhood of P . Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021)

Ref Expression
Hypothesis gneispace.x 𝑋 = 𝐽
Assertion gneispb ( ( 𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑁𝑠𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) )

Proof

Step Hyp Ref Expression
1 gneispace.x 𝑋 = 𝐽
2 3simpb ( ( 𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) )
3 2 ad2antrr ( ( ( ( 𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑁𝑠 ) → ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) )
4 simpr ( ( ( ( 𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑁𝑠 ) → 𝑁𝑠 )
5 simplr ( ( ( ( 𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑁𝑠 ) → 𝑠 ∈ 𝒫 𝑋 )
6 5 elpwid ( ( ( ( 𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑁𝑠 ) → 𝑠𝑋 )
7 1 ssnei2 ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ ( 𝑁𝑠𝑠𝑋 ) ) → 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )
8 3 4 6 7 syl12anc ( ( ( ( 𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑁𝑠 ) → 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) )
9 8 exp31 ( ( 𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( 𝑠 ∈ 𝒫 𝑋 → ( 𝑁𝑠𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) )
10 9 ralrimiv ( ( 𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑁𝑠𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) )