| Step | Hyp | Ref | Expression | 
						
							| 1 |  | golem1.1 |  |-  A e. CH | 
						
							| 2 |  | golem1.2 |  |-  B e. CH | 
						
							| 3 |  | golem1.3 |  |-  C e. CH | 
						
							| 4 |  | golem1.4 |  |-  F = ( ( _|_ ` A ) vH ( A i^i B ) ) | 
						
							| 5 |  | golem1.5 |  |-  G = ( ( _|_ ` B ) vH ( B i^i C ) ) | 
						
							| 6 |  | golem1.6 |  |-  H = ( ( _|_ ` C ) vH ( C i^i A ) ) | 
						
							| 7 |  | golem1.7 |  |-  D = ( ( _|_ ` B ) vH ( B i^i A ) ) | 
						
							| 8 |  | golem1.8 |  |-  R = ( ( _|_ ` C ) vH ( C i^i B ) ) | 
						
							| 9 |  | golem1.9 |  |-  S = ( ( _|_ ` A ) vH ( A i^i C ) ) | 
						
							| 10 | 1 | choccli |  |-  ( _|_ ` A ) e. CH | 
						
							| 11 |  | stcl |  |-  ( f e. States -> ( ( _|_ ` A ) e. CH -> ( f ` ( _|_ ` A ) ) e. RR ) ) | 
						
							| 12 | 10 11 | mpi |  |-  ( f e. States -> ( f ` ( _|_ ` A ) ) e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( f e. States -> ( f ` ( _|_ ` A ) ) e. CC ) | 
						
							| 14 | 2 | choccli |  |-  ( _|_ ` B ) e. CH | 
						
							| 15 |  | stcl |  |-  ( f e. States -> ( ( _|_ ` B ) e. CH -> ( f ` ( _|_ ` B ) ) e. RR ) ) | 
						
							| 16 | 14 15 | mpi |  |-  ( f e. States -> ( f ` ( _|_ ` B ) ) e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( f e. States -> ( f ` ( _|_ ` B ) ) e. CC ) | 
						
							| 18 | 3 | choccli |  |-  ( _|_ ` C ) e. CH | 
						
							| 19 |  | stcl |  |-  ( f e. States -> ( ( _|_ ` C ) e. CH -> ( f ` ( _|_ ` C ) ) e. RR ) ) | 
						
							| 20 | 18 19 | mpi |  |-  ( f e. States -> ( f ` ( _|_ ` C ) ) e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( f e. States -> ( f ` ( _|_ ` C ) ) e. CC ) | 
						
							| 22 | 13 17 21 | addassd |  |-  ( f e. States -> ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( _|_ ` B ) ) ) + ( f ` ( _|_ ` C ) ) ) = ( ( f ` ( _|_ ` A ) ) + ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) ) ) | 
						
							| 23 | 17 21 | addcld |  |-  ( f e. States -> ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) e. CC ) | 
						
							| 24 | 13 23 | addcomd |  |-  ( f e. States -> ( ( f ` ( _|_ ` A ) ) + ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) ) = ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) + ( f ` ( _|_ ` A ) ) ) ) | 
						
							| 25 | 22 24 | eqtrd |  |-  ( f e. States -> ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( _|_ ` B ) ) ) + ( f ` ( _|_ ` C ) ) ) = ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) + ( f ` ( _|_ ` A ) ) ) ) | 
						
							| 26 | 25 | oveq1d |  |-  ( f e. States -> ( ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( _|_ ` B ) ) ) + ( f ` ( _|_ ` C ) ) ) + ( ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) + ( f ` ( C i^i A ) ) ) ) = ( ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) + ( f ` ( _|_ ` A ) ) ) + ( ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) + ( f ` ( C i^i A ) ) ) ) ) | 
						
							| 27 | 13 17 | addcld |  |-  ( f e. States -> ( ( f ` ( _|_ ` A ) ) + ( f ` ( _|_ ` B ) ) ) e. CC ) | 
						
							| 28 | 1 2 | chincli |  |-  ( A i^i B ) e. CH | 
						
							| 29 |  | stcl |  |-  ( f e. States -> ( ( A i^i B ) e. CH -> ( f ` ( A i^i B ) ) e. RR ) ) | 
						
							| 30 | 28 29 | mpi |  |-  ( f e. States -> ( f ` ( A i^i B ) ) e. RR ) | 
						
							| 31 | 30 | recnd |  |-  ( f e. States -> ( f ` ( A i^i B ) ) e. CC ) | 
						
							| 32 | 2 3 | chincli |  |-  ( B i^i C ) e. CH | 
						
							| 33 |  | stcl |  |-  ( f e. States -> ( ( B i^i C ) e. CH -> ( f ` ( B i^i C ) ) e. RR ) ) | 
						
							| 34 | 32 33 | mpi |  |-  ( f e. States -> ( f ` ( B i^i C ) ) e. RR ) | 
						
							| 35 | 34 | recnd |  |-  ( f e. States -> ( f ` ( B i^i C ) ) e. CC ) | 
						
							| 36 | 31 35 | addcld |  |-  ( f e. States -> ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) e. CC ) | 
						
							| 37 | 3 1 | chincli |  |-  ( C i^i A ) e. CH | 
						
							| 38 |  | stcl |  |-  ( f e. States -> ( ( C i^i A ) e. CH -> ( f ` ( C i^i A ) ) e. RR ) ) | 
						
							| 39 | 37 38 | mpi |  |-  ( f e. States -> ( f ` ( C i^i A ) ) e. RR ) | 
						
							| 40 | 39 | recnd |  |-  ( f e. States -> ( f ` ( C i^i A ) ) e. CC ) | 
						
							| 41 | 27 36 21 40 | add4d |  |-  ( f e. States -> ( ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( _|_ ` B ) ) ) + ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( C i^i A ) ) ) ) = ( ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( _|_ ` B ) ) ) + ( f ` ( _|_ ` C ) ) ) + ( ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) + ( f ` ( C i^i A ) ) ) ) ) | 
						
							| 42 | 23 36 13 40 | add4d |  |-  ( f e. States -> ( ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) + ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` A ) ) + ( f ` ( C i^i A ) ) ) ) = ( ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) + ( f ` ( _|_ ` A ) ) ) + ( ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) + ( f ` ( C i^i A ) ) ) ) ) | 
						
							| 43 | 26 41 42 | 3eqtr4d |  |-  ( f e. States -> ( ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( _|_ ` B ) ) ) + ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( C i^i A ) ) ) ) = ( ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) + ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` A ) ) + ( f ` ( C i^i A ) ) ) ) ) | 
						
							| 44 | 13 31 17 35 | add4d |  |-  ( f e. States -> ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` B ) ) + ( f ` ( B i^i C ) ) ) ) = ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( _|_ ` B ) ) ) + ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) ) ) | 
						
							| 45 | 44 | oveq1d |  |-  ( f e. States -> ( ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` B ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( C i^i A ) ) ) ) = ( ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( _|_ ` B ) ) ) + ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( C i^i A ) ) ) ) ) | 
						
							| 46 | 17 31 21 35 | add4d |  |-  ( f e. States -> ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( B i^i C ) ) ) ) = ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) + ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) ) ) | 
						
							| 47 | 46 | oveq1d |  |-  ( f e. States -> ( ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` A ) ) + ( f ` ( C i^i A ) ) ) ) = ( ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( _|_ ` C ) ) ) + ( ( f ` ( A i^i B ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` A ) ) + ( f ` ( C i^i A ) ) ) ) ) | 
						
							| 48 | 43 45 47 | 3eqtr4d |  |-  ( f e. States -> ( ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` B ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( C i^i A ) ) ) ) = ( ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` A ) ) + ( f ` ( C i^i A ) ) ) ) ) | 
						
							| 49 | 1 2 | stji1i |  |-  ( f e. States -> ( f ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = ( ( f ` ( _|_ ` A ) ) + ( f ` ( A i^i B ) ) ) ) | 
						
							| 50 | 2 3 | stji1i |  |-  ( f e. States -> ( f ` ( ( _|_ ` B ) vH ( B i^i C ) ) ) = ( ( f ` ( _|_ ` B ) ) + ( f ` ( B i^i C ) ) ) ) | 
						
							| 51 | 49 50 | oveq12d |  |-  ( f e. States -> ( ( f ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) + ( f ` ( ( _|_ ` B ) vH ( B i^i C ) ) ) ) = ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` B ) ) + ( f ` ( B i^i C ) ) ) ) ) | 
						
							| 52 | 3 1 | stji1i |  |-  ( f e. States -> ( f ` ( ( _|_ ` C ) vH ( C i^i A ) ) ) = ( ( f ` ( _|_ ` C ) ) + ( f ` ( C i^i A ) ) ) ) | 
						
							| 53 | 51 52 | oveq12d |  |-  ( f e. States -> ( ( ( f ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) + ( f ` ( ( _|_ ` B ) vH ( B i^i C ) ) ) ) + ( f ` ( ( _|_ ` C ) vH ( C i^i A ) ) ) ) = ( ( ( ( f ` ( _|_ ` A ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` B ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( C i^i A ) ) ) ) ) | 
						
							| 54 | 2 1 | stji1i |  |-  ( f e. States -> ( f ` ( ( _|_ ` B ) vH ( B i^i A ) ) ) = ( ( f ` ( _|_ ` B ) ) + ( f ` ( B i^i A ) ) ) ) | 
						
							| 55 |  | incom |  |-  ( B i^i A ) = ( A i^i B ) | 
						
							| 56 | 55 | fveq2i |  |-  ( f ` ( B i^i A ) ) = ( f ` ( A i^i B ) ) | 
						
							| 57 | 56 | oveq2i |  |-  ( ( f ` ( _|_ ` B ) ) + ( f ` ( B i^i A ) ) ) = ( ( f ` ( _|_ ` B ) ) + ( f ` ( A i^i B ) ) ) | 
						
							| 58 | 54 57 | eqtrdi |  |-  ( f e. States -> ( f ` ( ( _|_ ` B ) vH ( B i^i A ) ) ) = ( ( f ` ( _|_ ` B ) ) + ( f ` ( A i^i B ) ) ) ) | 
						
							| 59 | 3 2 | stji1i |  |-  ( f e. States -> ( f ` ( ( _|_ ` C ) vH ( C i^i B ) ) ) = ( ( f ` ( _|_ ` C ) ) + ( f ` ( C i^i B ) ) ) ) | 
						
							| 60 |  | incom |  |-  ( C i^i B ) = ( B i^i C ) | 
						
							| 61 | 60 | fveq2i |  |-  ( f ` ( C i^i B ) ) = ( f ` ( B i^i C ) ) | 
						
							| 62 | 61 | oveq2i |  |-  ( ( f ` ( _|_ ` C ) ) + ( f ` ( C i^i B ) ) ) = ( ( f ` ( _|_ ` C ) ) + ( f ` ( B i^i C ) ) ) | 
						
							| 63 | 59 62 | eqtrdi |  |-  ( f e. States -> ( f ` ( ( _|_ ` C ) vH ( C i^i B ) ) ) = ( ( f ` ( _|_ ` C ) ) + ( f ` ( B i^i C ) ) ) ) | 
						
							| 64 | 58 63 | oveq12d |  |-  ( f e. States -> ( ( f ` ( ( _|_ ` B ) vH ( B i^i A ) ) ) + ( f ` ( ( _|_ ` C ) vH ( C i^i B ) ) ) ) = ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( B i^i C ) ) ) ) ) | 
						
							| 65 | 1 3 | stji1i |  |-  ( f e. States -> ( f ` ( ( _|_ ` A ) vH ( A i^i C ) ) ) = ( ( f ` ( _|_ ` A ) ) + ( f ` ( A i^i C ) ) ) ) | 
						
							| 66 |  | incom |  |-  ( A i^i C ) = ( C i^i A ) | 
						
							| 67 | 66 | fveq2i |  |-  ( f ` ( A i^i C ) ) = ( f ` ( C i^i A ) ) | 
						
							| 68 | 67 | oveq2i |  |-  ( ( f ` ( _|_ ` A ) ) + ( f ` ( A i^i C ) ) ) = ( ( f ` ( _|_ ` A ) ) + ( f ` ( C i^i A ) ) ) | 
						
							| 69 | 65 68 | eqtrdi |  |-  ( f e. States -> ( f ` ( ( _|_ ` A ) vH ( A i^i C ) ) ) = ( ( f ` ( _|_ ` A ) ) + ( f ` ( C i^i A ) ) ) ) | 
						
							| 70 | 64 69 | oveq12d |  |-  ( f e. States -> ( ( ( f ` ( ( _|_ ` B ) vH ( B i^i A ) ) ) + ( f ` ( ( _|_ ` C ) vH ( C i^i B ) ) ) ) + ( f ` ( ( _|_ ` A ) vH ( A i^i C ) ) ) ) = ( ( ( ( f ` ( _|_ ` B ) ) + ( f ` ( A i^i B ) ) ) + ( ( f ` ( _|_ ` C ) ) + ( f ` ( B i^i C ) ) ) ) + ( ( f ` ( _|_ ` A ) ) + ( f ` ( C i^i A ) ) ) ) ) | 
						
							| 71 | 48 53 70 | 3eqtr4d |  |-  ( f e. States -> ( ( ( f ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) + ( f ` ( ( _|_ ` B ) vH ( B i^i C ) ) ) ) + ( f ` ( ( _|_ ` C ) vH ( C i^i A ) ) ) ) = ( ( ( f ` ( ( _|_ ` B ) vH ( B i^i A ) ) ) + ( f ` ( ( _|_ ` C ) vH ( C i^i B ) ) ) ) + ( f ` ( ( _|_ ` A ) vH ( A i^i C ) ) ) ) ) | 
						
							| 72 | 4 | fveq2i |  |-  ( f ` F ) = ( f ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) | 
						
							| 73 | 5 | fveq2i |  |-  ( f ` G ) = ( f ` ( ( _|_ ` B ) vH ( B i^i C ) ) ) | 
						
							| 74 | 72 73 | oveq12i |  |-  ( ( f ` F ) + ( f ` G ) ) = ( ( f ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) + ( f ` ( ( _|_ ` B ) vH ( B i^i C ) ) ) ) | 
						
							| 75 | 6 | fveq2i |  |-  ( f ` H ) = ( f ` ( ( _|_ ` C ) vH ( C i^i A ) ) ) | 
						
							| 76 | 74 75 | oveq12i |  |-  ( ( ( f ` F ) + ( f ` G ) ) + ( f ` H ) ) = ( ( ( f ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) + ( f ` ( ( _|_ ` B ) vH ( B i^i C ) ) ) ) + ( f ` ( ( _|_ ` C ) vH ( C i^i A ) ) ) ) | 
						
							| 77 | 7 | fveq2i |  |-  ( f ` D ) = ( f ` ( ( _|_ ` B ) vH ( B i^i A ) ) ) | 
						
							| 78 | 8 | fveq2i |  |-  ( f ` R ) = ( f ` ( ( _|_ ` C ) vH ( C i^i B ) ) ) | 
						
							| 79 | 77 78 | oveq12i |  |-  ( ( f ` D ) + ( f ` R ) ) = ( ( f ` ( ( _|_ ` B ) vH ( B i^i A ) ) ) + ( f ` ( ( _|_ ` C ) vH ( C i^i B ) ) ) ) | 
						
							| 80 | 9 | fveq2i |  |-  ( f ` S ) = ( f ` ( ( _|_ ` A ) vH ( A i^i C ) ) ) | 
						
							| 81 | 79 80 | oveq12i |  |-  ( ( ( f ` D ) + ( f ` R ) ) + ( f ` S ) ) = ( ( ( f ` ( ( _|_ ` B ) vH ( B i^i A ) ) ) + ( f ` ( ( _|_ ` C ) vH ( C i^i B ) ) ) ) + ( f ` ( ( _|_ ` A ) vH ( A i^i C ) ) ) ) | 
						
							| 82 | 71 76 81 | 3eqtr4g |  |-  ( f e. States -> ( ( ( f ` F ) + ( f ` G ) ) + ( f ` H ) ) = ( ( ( f ` D ) + ( f ` R ) ) + ( f ` S ) ) ) |