| Step |
Hyp |
Ref |
Expression |
| 1 |
|
golem1.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
golem1.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
golem1.3 |
⊢ 𝐶 ∈ Cℋ |
| 4 |
|
golem1.4 |
⊢ 𝐹 = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) |
| 5 |
|
golem1.5 |
⊢ 𝐺 = ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) |
| 6 |
|
golem1.6 |
⊢ 𝐻 = ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐴 ) ) |
| 7 |
|
golem1.7 |
⊢ 𝐷 = ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐴 ) ) |
| 8 |
|
golem1.8 |
⊢ 𝑅 = ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) |
| 9 |
|
golem1.9 |
⊢ 𝑆 = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) |
| 10 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 11 |
|
stcl |
⊢ ( 𝑓 ∈ States → ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ → ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℝ ) ) |
| 12 |
10 11
|
mpi |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℂ ) |
| 14 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 15 |
|
stcl |
⊢ ( 𝑓 ∈ States → ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ → ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) ) |
| 16 |
14 15
|
mpi |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) |
| 17 |
16
|
recnd |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℂ ) |
| 18 |
3
|
choccli |
⊢ ( ⊥ ‘ 𝐶 ) ∈ Cℋ |
| 19 |
|
stcl |
⊢ ( 𝑓 ∈ States → ( ( ⊥ ‘ 𝐶 ) ∈ Cℋ → ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ∈ ℝ ) ) |
| 20 |
18 19
|
mpi |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ∈ ℂ ) |
| 22 |
13 17 21
|
addassd |
⊢ ( 𝑓 ∈ States → ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) ) ) |
| 23 |
17 21
|
addcld |
⊢ ( 𝑓 ∈ States → ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 24 |
13 23
|
addcomd |
⊢ ( 𝑓 ∈ States → ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) ) = ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 25 |
22 24
|
eqtrd |
⊢ ( 𝑓 ∈ States → ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) = ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑓 ∈ States → ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) = ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) ) + ( ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) ) |
| 27 |
13 17
|
addcld |
⊢ ( 𝑓 ∈ States → ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 28 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 29 |
|
stcl |
⊢ ( 𝑓 ∈ States → ( ( 𝐴 ∩ 𝐵 ) ∈ Cℋ → ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) ) |
| 30 |
28 29
|
mpi |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 31 |
30
|
recnd |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
| 32 |
2 3
|
chincli |
⊢ ( 𝐵 ∩ 𝐶 ) ∈ Cℋ |
| 33 |
|
stcl |
⊢ ( 𝑓 ∈ States → ( ( 𝐵 ∩ 𝐶 ) ∈ Cℋ → ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ∈ ℝ ) ) |
| 34 |
32 33
|
mpi |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ∈ ℝ ) |
| 35 |
34
|
recnd |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ∈ ℂ ) |
| 36 |
31 35
|
addcld |
⊢ ( 𝑓 ∈ States → ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ∈ ℂ ) |
| 37 |
3 1
|
chincli |
⊢ ( 𝐶 ∩ 𝐴 ) ∈ Cℋ |
| 38 |
|
stcl |
⊢ ( 𝑓 ∈ States → ( ( 𝐶 ∩ 𝐴 ) ∈ Cℋ → ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ∈ ℝ ) ) |
| 39 |
37 38
|
mpi |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ∈ ℝ ) |
| 40 |
39
|
recnd |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ∈ ℂ ) |
| 41 |
27 36 21 40
|
add4d |
⊢ ( 𝑓 ∈ States → ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) = ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) ) |
| 42 |
23 36 13 40
|
add4d |
⊢ ( 𝑓 ∈ States → ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) = ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) ) + ( ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) ) |
| 43 |
26 41 42
|
3eqtr4d |
⊢ ( 𝑓 ∈ States → ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) = ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) ) |
| 44 |
13 31 17 35
|
add4d |
⊢ ( 𝑓 ∈ States → ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) = ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 45 |
44
|
oveq1d |
⊢ ( 𝑓 ∈ States → ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) = ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) ) |
| 46 |
17 31 21 35
|
add4d |
⊢ ( 𝑓 ∈ States → ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) = ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝑓 ∈ States → ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) = ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) + ( ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) ) |
| 48 |
43 45 47
|
3eqtr4d |
⊢ ( 𝑓 ∈ States → ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) = ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) ) |
| 49 |
1 2
|
stji1i |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 50 |
2 3
|
stji1i |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 51 |
49 50
|
oveq12d |
⊢ ( 𝑓 ∈ States → ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) = ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 52 |
3 1
|
stji1i |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐴 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) |
| 53 |
51 52
|
oveq12d |
⊢ ( 𝑓 ∈ States → ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐴 ) ) ) ) = ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) ) |
| 54 |
2 1
|
stji1i |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐴 ) ) ) ) |
| 55 |
|
incom |
⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) |
| 56 |
55
|
fveq2i |
⊢ ( 𝑓 ‘ ( 𝐵 ∩ 𝐴 ) ) = ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) |
| 57 |
56
|
oveq2i |
⊢ ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐴 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 58 |
54 57
|
eqtrdi |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 59 |
3 2
|
stji1i |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐵 ) ) ) ) |
| 60 |
|
incom |
⊢ ( 𝐶 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐶 ) |
| 61 |
60
|
fveq2i |
⊢ ( 𝑓 ‘ ( 𝐶 ∩ 𝐵 ) ) = ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) |
| 62 |
61
|
oveq2i |
⊢ ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐵 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) |
| 63 |
59 62
|
eqtrdi |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 64 |
58 63
|
oveq12d |
⊢ ( 𝑓 ∈ States → ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) ) ) = ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 65 |
1 3
|
stji1i |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐶 ) ) ) ) |
| 66 |
|
incom |
⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐴 ) |
| 67 |
66
|
fveq2i |
⊢ ( 𝑓 ‘ ( 𝐴 ∩ 𝐶 ) ) = ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) |
| 68 |
67
|
oveq2i |
⊢ ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐶 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) |
| 69 |
65 68
|
eqtrdi |
⊢ ( 𝑓 ∈ States → ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ) = ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) |
| 70 |
64 69
|
oveq12d |
⊢ ( 𝑓 ∈ States → ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ) ) = ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) + ( 𝑓 ‘ ( 𝐴 ∩ 𝐵 ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) + ( 𝑓 ‘ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑓 ‘ ( 𝐶 ∩ 𝐴 ) ) ) ) ) |
| 71 |
48 53 70
|
3eqtr4d |
⊢ ( 𝑓 ∈ States → ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐴 ) ) ) ) = ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ) ) ) |
| 72 |
4
|
fveq2i |
⊢ ( 𝑓 ‘ 𝐹 ) = ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
| 73 |
5
|
fveq2i |
⊢ ( 𝑓 ‘ 𝐺 ) = ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
| 74 |
72 73
|
oveq12i |
⊢ ( ( 𝑓 ‘ 𝐹 ) + ( 𝑓 ‘ 𝐺 ) ) = ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 75 |
6
|
fveq2i |
⊢ ( 𝑓 ‘ 𝐻 ) = ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐴 ) ) ) |
| 76 |
74 75
|
oveq12i |
⊢ ( ( ( 𝑓 ‘ 𝐹 ) + ( 𝑓 ‘ 𝐺 ) ) + ( 𝑓 ‘ 𝐻 ) ) = ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐴 ) ) ) ) |
| 77 |
7
|
fveq2i |
⊢ ( 𝑓 ‘ 𝐷 ) = ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) |
| 78 |
8
|
fveq2i |
⊢ ( 𝑓 ‘ 𝑅 ) = ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) ) |
| 79 |
77 78
|
oveq12i |
⊢ ( ( 𝑓 ‘ 𝐷 ) + ( 𝑓 ‘ 𝑅 ) ) = ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) ) ) |
| 80 |
9
|
fveq2i |
⊢ ( 𝑓 ‘ 𝑆 ) = ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ) |
| 81 |
79 80
|
oveq12i |
⊢ ( ( ( 𝑓 ‘ 𝐷 ) + ( 𝑓 ‘ 𝑅 ) ) + ( 𝑓 ‘ 𝑆 ) ) = ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( 𝐵 ∩ 𝐴 ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) ) ) + ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ) ) |
| 82 |
71 76 81
|
3eqtr4g |
⊢ ( 𝑓 ∈ States → ( ( ( 𝑓 ‘ 𝐹 ) + ( 𝑓 ‘ 𝐺 ) ) + ( 𝑓 ‘ 𝐻 ) ) = ( ( ( 𝑓 ‘ 𝐷 ) + ( 𝑓 ‘ 𝑅 ) ) + ( 𝑓 ‘ 𝑆 ) ) ) |