| Step | Hyp | Ref | Expression | 
						
							| 1 |  | golem1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | golem1.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | golem1.3 | ⊢ 𝐶  ∈   Cℋ | 
						
							| 4 |  | golem1.4 | ⊢ 𝐹  =  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 5 |  | golem1.5 | ⊢ 𝐺  =  ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 6 |  | golem1.6 | ⊢ 𝐻  =  ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) ) | 
						
							| 7 |  | golem1.7 | ⊢ 𝐷  =  ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 8 |  | golem1.8 | ⊢ 𝑅  =  ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) | 
						
							| 9 |  | golem1.9 | ⊢ 𝑆  =  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) ) | 
						
							| 10 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 11 |  | stcl | ⊢ ( 𝑓  ∈  States  →  ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   →  ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℝ ) ) | 
						
							| 12 | 10 11 | mpi | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 14 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 )  ∈   Cℋ | 
						
							| 15 |  | stcl | ⊢ ( 𝑓  ∈  States  →  ( ( ⊥ ‘ 𝐵 )  ∈   Cℋ   →  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  ∈  ℝ ) ) | 
						
							| 16 | 14 15 | mpi | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 17 | 16 | recnd | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 18 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐶 )  ∈   Cℋ | 
						
							| 19 |  | stcl | ⊢ ( 𝑓  ∈  States  →  ( ( ⊥ ‘ 𝐶 )  ∈   Cℋ   →  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  ∈  ℝ ) ) | 
						
							| 20 | 18 19 | mpi | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  ∈  ℝ ) | 
						
							| 21 | 20 | recnd | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  ∈  ℂ ) | 
						
							| 22 | 13 17 21 | addassd | ⊢ ( 𝑓  ∈  States  →  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) ) ) | 
						
							| 23 | 17 21 | addcld | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  ∈  ℂ ) | 
						
							| 24 | 13 23 | addcomd | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) ) )  =  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( 𝑓  ∈  States  →  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  =  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑓  ∈  States  →  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) )  =  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) )  +  ( ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) ) | 
						
							| 27 | 13 17 | addcld | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) )  ∈  ℂ ) | 
						
							| 28 | 1 2 | chincli | ⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ | 
						
							| 29 |  | stcl | ⊢ ( 𝑓  ∈  States  →  ( ( 𝐴  ∩  𝐵 )  ∈   Cℋ   →  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  ∈  ℝ ) ) | 
						
							| 30 | 28 29 | mpi | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  ∈  ℝ ) | 
						
							| 31 | 30 | recnd | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  ∈  ℂ ) | 
						
							| 32 | 2 3 | chincli | ⊢ ( 𝐵  ∩  𝐶 )  ∈   Cℋ | 
						
							| 33 |  | stcl | ⊢ ( 𝑓  ∈  States  →  ( ( 𝐵  ∩  𝐶 )  ∈   Cℋ   →  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) )  ∈  ℝ ) ) | 
						
							| 34 | 32 33 | mpi | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) )  ∈  ℝ ) | 
						
							| 35 | 34 | recnd | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) )  ∈  ℂ ) | 
						
							| 36 | 31 35 | addcld | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) )  ∈  ℂ ) | 
						
							| 37 | 3 1 | chincli | ⊢ ( 𝐶  ∩  𝐴 )  ∈   Cℋ | 
						
							| 38 |  | stcl | ⊢ ( 𝑓  ∈  States  →  ( ( 𝐶  ∩  𝐴 )  ∈   Cℋ   →  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) )  ∈  ℝ ) ) | 
						
							| 39 | 37 38 | mpi | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) )  ∈  ℝ ) | 
						
							| 40 | 39 | recnd | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) )  ∈  ℂ ) | 
						
							| 41 | 27 36 21 40 | add4d | ⊢ ( 𝑓  ∈  States  →  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) )  +  ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) )  =  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) ) | 
						
							| 42 | 23 36 13 40 | add4d | ⊢ ( 𝑓  ∈  States  →  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) )  =  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) ) )  +  ( ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) ) | 
						
							| 43 | 26 41 42 | 3eqtr4d | ⊢ ( 𝑓  ∈  States  →  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) )  +  ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) )  =  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) ) | 
						
							| 44 | 13 31 17 35 | add4d | ⊢ ( 𝑓  ∈  States  →  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  =  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) )  +  ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( 𝑓  ∈  States  →  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) )  =  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) ) )  +  ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) ) | 
						
							| 46 | 17 31 21 35 | add4d | ⊢ ( 𝑓  ∈  States  →  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  =  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( 𝑓  ∈  States  →  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) )  =  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) ) )  +  ( ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) ) | 
						
							| 48 | 43 45 47 | 3eqtr4d | ⊢ ( 𝑓  ∈  States  →  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) )  =  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) ) | 
						
							| 49 | 1 2 | stji1i | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) ) ) | 
						
							| 50 | 2 3 | stji1i | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 51 | 49 50 | oveq12d | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) ) )  =  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 52 | 3 1 | stji1i | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) | 
						
							| 53 | 51 52 | oveq12d | ⊢ ( 𝑓  ∈  States  →  ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) ) ) )  =  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) ) | 
						
							| 54 | 2 1 | stji1i | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐴 ) ) ) ) | 
						
							| 55 |  | incom | ⊢ ( 𝐵  ∩  𝐴 )  =  ( 𝐴  ∩  𝐵 ) | 
						
							| 56 | 55 | fveq2i | ⊢ ( 𝑓 ‘ ( 𝐵  ∩  𝐴 ) )  =  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) | 
						
							| 57 | 56 | oveq2i | ⊢ ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐴 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 58 | 54 57 | eqtrdi | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) ) ) | 
						
							| 59 | 3 2 | stji1i | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐵 ) ) ) ) | 
						
							| 60 |  | incom | ⊢ ( 𝐶  ∩  𝐵 )  =  ( 𝐵  ∩  𝐶 ) | 
						
							| 61 | 60 | fveq2i | ⊢ ( 𝑓 ‘ ( 𝐶  ∩  𝐵 ) )  =  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) | 
						
							| 62 | 61 | oveq2i | ⊢ ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐵 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 63 | 59 62 | eqtrdi | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 64 | 58 63 | oveq12d | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) ) )  =  ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 65 | 1 3 | stji1i | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐶 ) ) ) ) | 
						
							| 66 |  | incom | ⊢ ( 𝐴  ∩  𝐶 )  =  ( 𝐶  ∩  𝐴 ) | 
						
							| 67 | 66 | fveq2i | ⊢ ( 𝑓 ‘ ( 𝐴  ∩  𝐶 ) )  =  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) | 
						
							| 68 | 67 | oveq2i | ⊢ ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐶 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) | 
						
							| 69 | 65 68 | eqtrdi | ⊢ ( 𝑓  ∈  States  →  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) ) )  =  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) | 
						
							| 70 | 64 69 | oveq12d | ⊢ ( 𝑓  ∈  States  →  ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) ) ) )  =  ( ( ( ( 𝑓 ‘ ( ⊥ ‘ 𝐵 ) )  +  ( 𝑓 ‘ ( 𝐴  ∩  𝐵 ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐶 ) )  +  ( 𝑓 ‘ ( 𝐵  ∩  𝐶 ) ) ) )  +  ( ( 𝑓 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑓 ‘ ( 𝐶  ∩  𝐴 ) ) ) ) ) | 
						
							| 71 | 48 53 70 | 3eqtr4d | ⊢ ( 𝑓  ∈  States  →  ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) ) ) )  =  ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) ) ) ) ) | 
						
							| 72 | 4 | fveq2i | ⊢ ( 𝑓 ‘ 𝐹 )  =  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 73 | 5 | fveq2i | ⊢ ( 𝑓 ‘ 𝐺 )  =  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 74 | 72 73 | oveq12i | ⊢ ( ( 𝑓 ‘ 𝐹 )  +  ( 𝑓 ‘ 𝐺 ) )  =  ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 75 | 6 | fveq2i | ⊢ ( 𝑓 ‘ 𝐻 )  =  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) ) ) | 
						
							| 76 | 74 75 | oveq12i | ⊢ ( ( ( 𝑓 ‘ 𝐹 )  +  ( 𝑓 ‘ 𝐺 ) )  +  ( 𝑓 ‘ 𝐻 ) )  =  ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) ) ) ) | 
						
							| 77 | 7 | fveq2i | ⊢ ( 𝑓 ‘ 𝐷 )  =  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) ) | 
						
							| 78 | 8 | fveq2i | ⊢ ( 𝑓 ‘ 𝑅 )  =  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) ) | 
						
							| 79 | 77 78 | oveq12i | ⊢ ( ( 𝑓 ‘ 𝐷 )  +  ( 𝑓 ‘ 𝑅 ) )  =  ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) ) ) | 
						
							| 80 | 9 | fveq2i | ⊢ ( 𝑓 ‘ 𝑆 )  =  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 81 | 79 80 | oveq12i | ⊢ ( ( ( 𝑓 ‘ 𝐷 )  +  ( 𝑓 ‘ 𝑅 ) )  +  ( 𝑓 ‘ 𝑆 ) )  =  ( ( ( 𝑓 ‘ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) ) )  +  ( 𝑓 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) ) ) ) | 
						
							| 82 | 71 76 81 | 3eqtr4g | ⊢ ( 𝑓  ∈  States  →  ( ( ( 𝑓 ‘ 𝐹 )  +  ( 𝑓 ‘ 𝐺 ) )  +  ( 𝑓 ‘ 𝐻 ) )  =  ( ( ( 𝑓 ‘ 𝐷 )  +  ( 𝑓 ‘ 𝑅 ) )  +  ( 𝑓 ‘ 𝑆 ) ) ) |