| Step | Hyp | Ref | Expression | 
						
							| 1 |  | golem1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | golem1.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | golem1.3 | ⊢ 𝐶  ∈   Cℋ | 
						
							| 4 |  | golem1.4 | ⊢ 𝐹  =  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 5 |  | golem1.5 | ⊢ 𝐺  =  ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 6 |  | golem1.6 | ⊢ 𝐻  =  ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) ) | 
						
							| 7 |  | golem1.7 | ⊢ 𝐷  =  ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 8 |  | golem1.8 | ⊢ 𝑅  =  ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) | 
						
							| 9 |  | golem1.9 | ⊢ 𝑆  =  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) ) | 
						
							| 10 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 11 | 1 2 | chincli | ⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ | 
						
							| 12 | 10 11 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) )  ∈   Cℋ | 
						
							| 13 | 4 12 | eqeltri | ⊢ 𝐹  ∈   Cℋ | 
						
							| 14 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 )  ∈   Cℋ | 
						
							| 15 | 2 3 | chincli | ⊢ ( 𝐵  ∩  𝐶 )  ∈   Cℋ | 
						
							| 16 | 14 15 | chjcli | ⊢ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) )  ∈   Cℋ | 
						
							| 17 | 5 16 | eqeltri | ⊢ 𝐺  ∈   Cℋ | 
						
							| 18 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐶 )  ∈   Cℋ | 
						
							| 19 | 3 1 | chincli | ⊢ ( 𝐶  ∩  𝐴 )  ∈   Cℋ | 
						
							| 20 | 18 19 | chjcli | ⊢ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) )  ∈   Cℋ | 
						
							| 21 | 6 20 | eqeltri | ⊢ 𝐻  ∈   Cℋ | 
						
							| 22 | 13 17 21 | stm1add3i | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( ( 𝐹  ∩  𝐺 )  ∩  𝐻 ) )  =  1  →  ( ( ( 𝑓 ‘ 𝐹 )  +  ( 𝑓 ‘ 𝐺 ) )  +  ( 𝑓 ‘ 𝐻 ) )  =  3 ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 | golem1 | ⊢ ( 𝑓  ∈  States  →  ( ( ( 𝑓 ‘ 𝐹 )  +  ( 𝑓 ‘ 𝐺 ) )  +  ( 𝑓 ‘ 𝐻 ) )  =  ( ( ( 𝑓 ‘ 𝐷 )  +  ( 𝑓 ‘ 𝑅 ) )  +  ( 𝑓 ‘ 𝑆 ) ) ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( 𝑓  ∈  States  →  ( ( ( ( 𝑓 ‘ 𝐹 )  +  ( 𝑓 ‘ 𝐺 ) )  +  ( 𝑓 ‘ 𝐻 ) )  =  3  ↔  ( ( ( 𝑓 ‘ 𝐷 )  +  ( 𝑓 ‘ 𝑅 ) )  +  ( 𝑓 ‘ 𝑆 ) )  =  3 ) ) | 
						
							| 25 | 22 24 | sylibd | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( ( 𝐹  ∩  𝐺 )  ∩  𝐻 ) )  =  1  →  ( ( ( 𝑓 ‘ 𝐷 )  +  ( 𝑓 ‘ 𝑅 ) )  +  ( 𝑓 ‘ 𝑆 ) )  =  3 ) ) | 
						
							| 26 | 2 1 | chincli | ⊢ ( 𝐵  ∩  𝐴 )  ∈   Cℋ | 
						
							| 27 | 14 26 | chjcli | ⊢ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) )  ∈   Cℋ | 
						
							| 28 | 7 27 | eqeltri | ⊢ 𝐷  ∈   Cℋ | 
						
							| 29 | 3 2 | chincli | ⊢ ( 𝐶  ∩  𝐵 )  ∈   Cℋ | 
						
							| 30 | 18 29 | chjcli | ⊢ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) )  ∈   Cℋ | 
						
							| 31 | 8 30 | eqeltri | ⊢ 𝑅  ∈   Cℋ | 
						
							| 32 | 1 3 | chincli | ⊢ ( 𝐴  ∩  𝐶 )  ∈   Cℋ | 
						
							| 33 | 10 32 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) )  ∈   Cℋ | 
						
							| 34 | 9 33 | eqeltri | ⊢ 𝑆  ∈   Cℋ | 
						
							| 35 | 28 31 34 | stadd3i | ⊢ ( 𝑓  ∈  States  →  ( ( ( ( 𝑓 ‘ 𝐷 )  +  ( 𝑓 ‘ 𝑅 ) )  +  ( 𝑓 ‘ 𝑆 ) )  =  3  →  ( 𝑓 ‘ 𝐷 )  =  1 ) ) | 
						
							| 36 | 25 35 | syld | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( ( 𝐹  ∩  𝐺 )  ∩  𝐻 ) )  =  1  →  ( 𝑓 ‘ 𝐷 )  =  1 ) ) |