| Step | Hyp | Ref | Expression | 
						
							| 1 |  | goeq.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | goeq.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | goeq.3 | ⊢ 𝐶  ∈   Cℋ | 
						
							| 4 |  | goeq.4 | ⊢ 𝐹  =  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 5 |  | goeq.5 | ⊢ 𝐺  =  ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 6 |  | goeq.6 | ⊢ 𝐻  =  ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) ) | 
						
							| 7 |  | goeq.7 | ⊢ 𝐷  =  ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 8 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 9 | 1 2 | chincli | ⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ | 
						
							| 10 | 8 9 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) )  ∈   Cℋ | 
						
							| 11 | 4 10 | eqeltri | ⊢ 𝐹  ∈   Cℋ | 
						
							| 12 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 )  ∈   Cℋ | 
						
							| 13 | 2 3 | chincli | ⊢ ( 𝐵  ∩  𝐶 )  ∈   Cℋ | 
						
							| 14 | 12 13 | chjcli | ⊢ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐶 ) )  ∈   Cℋ | 
						
							| 15 | 5 14 | eqeltri | ⊢ 𝐺  ∈   Cℋ | 
						
							| 16 | 11 15 | chincli | ⊢ ( 𝐹  ∩  𝐺 )  ∈   Cℋ | 
						
							| 17 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐶 )  ∈   Cℋ | 
						
							| 18 | 3 1 | chincli | ⊢ ( 𝐶  ∩  𝐴 )  ∈   Cℋ | 
						
							| 19 | 17 18 | chjcli | ⊢ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐴 ) )  ∈   Cℋ | 
						
							| 20 | 6 19 | eqeltri | ⊢ 𝐻  ∈   Cℋ | 
						
							| 21 | 16 20 | chincli | ⊢ ( ( 𝐹  ∩  𝐺 )  ∩  𝐻 )  ∈   Cℋ | 
						
							| 22 | 2 1 | chincli | ⊢ ( 𝐵  ∩  𝐴 )  ∈   Cℋ | 
						
							| 23 | 12 22 | chjcli | ⊢ ( ( ⊥ ‘ 𝐵 )  ∨ℋ  ( 𝐵  ∩  𝐴 ) )  ∈   Cℋ | 
						
							| 24 | 7 23 | eqeltri | ⊢ 𝐷  ∈   Cℋ | 
						
							| 25 | 21 24 | stri | ⊢ ( ∀ 𝑓  ∈  States ( ( 𝑓 ‘ ( ( 𝐹  ∩  𝐺 )  ∩  𝐻 ) )  =  1  →  ( 𝑓 ‘ 𝐷 )  =  1 )  →  ( ( 𝐹  ∩  𝐺 )  ∩  𝐻 )  ⊆  𝐷 ) | 
						
							| 26 |  | eqid | ⊢ ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) )  =  ( ( ⊥ ‘ 𝐶 )  ∨ℋ  ( 𝐶  ∩  𝐵 ) ) | 
						
							| 27 |  | eqid | ⊢ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐶 ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 26 27 | golem2 | ⊢ ( 𝑓  ∈  States  →  ( ( 𝑓 ‘ ( ( 𝐹  ∩  𝐺 )  ∩  𝐻 ) )  =  1  →  ( 𝑓 ‘ 𝐷 )  =  1 ) ) | 
						
							| 29 | 25 28 | mprg | ⊢ ( ( 𝐹  ∩  𝐺 )  ∩  𝐻 )  ⊆  𝐷 |