Metamath Proof Explorer


Theorem goeqi

Description: Godowski's equation, shown here as a variant equivalent to Equation SF of Godowski p. 730. (Contributed by NM, 10-Nov-2002) (New usage is discouraged.)

Ref Expression
Hypotheses goeq.1 AC
goeq.2 BC
goeq.3 CC
goeq.4 F=AAB
goeq.5 G=BBC
goeq.6 H=CCA
goeq.7 D=BBA
Assertion goeqi FGHD

Proof

Step Hyp Ref Expression
1 goeq.1 AC
2 goeq.2 BC
3 goeq.3 CC
4 goeq.4 F=AAB
5 goeq.5 G=BBC
6 goeq.6 H=CCA
7 goeq.7 D=BBA
8 1 choccli AC
9 1 2 chincli ABC
10 8 9 chjcli AABC
11 4 10 eqeltri FC
12 2 choccli BC
13 2 3 chincli BCC
14 12 13 chjcli BBCC
15 5 14 eqeltri GC
16 11 15 chincli FGC
17 3 choccli CC
18 3 1 chincli CAC
19 17 18 chjcli CCAC
20 6 19 eqeltri HC
21 16 20 chincli FGHC
22 2 1 chincli BAC
23 12 22 chjcli BBAC
24 7 23 eqeltri DC
25 21 24 stri fStatesfFGH=1fD=1FGHD
26 eqid CCB=CCB
27 eqid AAC=AAC
28 1 2 3 4 5 6 7 26 27 golem2 fStatesfFGH=1fD=1
29 25 28 mprg FGHD