Metamath Proof Explorer


Theorem goeqi

Description: Godowski's equation, shown here as a variant equivalent to Equation SF of Godowski p. 730. (Contributed by NM, 10-Nov-2002) (New usage is discouraged.)

Ref Expression
Hypotheses goeq.1 A C
goeq.2 B C
goeq.3 C C
goeq.4 F = A A B
goeq.5 G = B B C
goeq.6 H = C C A
goeq.7 D = B B A
Assertion goeqi F G H D

Proof

Step Hyp Ref Expression
1 goeq.1 A C
2 goeq.2 B C
3 goeq.3 C C
4 goeq.4 F = A A B
5 goeq.5 G = B B C
6 goeq.6 H = C C A
7 goeq.7 D = B B A
8 1 choccli A C
9 1 2 chincli A B C
10 8 9 chjcli A A B C
11 4 10 eqeltri F C
12 2 choccli B C
13 2 3 chincli B C C
14 12 13 chjcli B B C C
15 5 14 eqeltri G C
16 11 15 chincli F G C
17 3 choccli C C
18 3 1 chincli C A C
19 17 18 chjcli C C A C
20 6 19 eqeltri H C
21 16 20 chincli F G H C
22 2 1 chincli B A C
23 12 22 chjcli B B A C
24 7 23 eqeltri D C
25 21 24 stri f States f F G H = 1 f D = 1 F G H D
26 eqid C C B = C C B
27 eqid A A C = A A C
28 1 2 3 4 5 6 7 26 27 golem2 f States f F G H = 1 f D = 1
29 25 28 mprg F G H D