Metamath Proof Explorer


Theorem golem2

Description: Lemma for Godowski's equation. (Contributed by NM, 13-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses golem1.1 A C
golem1.2 B C
golem1.3 C C
golem1.4 F = A A B
golem1.5 G = B B C
golem1.6 H = C C A
golem1.7 D = B B A
golem1.8 R = C C B
golem1.9 S = A A C
Assertion golem2 f States f F G H = 1 f D = 1

Proof

Step Hyp Ref Expression
1 golem1.1 A C
2 golem1.2 B C
3 golem1.3 C C
4 golem1.4 F = A A B
5 golem1.5 G = B B C
6 golem1.6 H = C C A
7 golem1.7 D = B B A
8 golem1.8 R = C C B
9 golem1.9 S = A A C
10 1 choccli A C
11 1 2 chincli A B C
12 10 11 chjcli A A B C
13 4 12 eqeltri F C
14 2 choccli B C
15 2 3 chincli B C C
16 14 15 chjcli B B C C
17 5 16 eqeltri G C
18 3 choccli C C
19 3 1 chincli C A C
20 18 19 chjcli C C A C
21 6 20 eqeltri H C
22 13 17 21 stm1add3i f States f F G H = 1 f F + f G + f H = 3
23 1 2 3 4 5 6 7 8 9 golem1 f States f F + f G + f H = f D + f R + f S
24 23 eqeq1d f States f F + f G + f H = 3 f D + f R + f S = 3
25 22 24 sylibd f States f F G H = 1 f D + f R + f S = 3
26 2 1 chincli B A C
27 14 26 chjcli B B A C
28 7 27 eqeltri D C
29 3 2 chincli C B C
30 18 29 chjcli C C B C
31 8 30 eqeltri R C
32 1 3 chincli A C C
33 10 32 chjcli A A C C
34 9 33 eqeltri S C
35 28 31 34 stadd3i f States f D + f R + f S = 3 f D = 1
36 25 35 syld f States f F G H = 1 f D = 1