Step |
Hyp |
Ref |
Expression |
1 |
|
golem1.1 |
|- A e. CH |
2 |
|
golem1.2 |
|- B e. CH |
3 |
|
golem1.3 |
|- C e. CH |
4 |
|
golem1.4 |
|- F = ( ( _|_ ` A ) vH ( A i^i B ) ) |
5 |
|
golem1.5 |
|- G = ( ( _|_ ` B ) vH ( B i^i C ) ) |
6 |
|
golem1.6 |
|- H = ( ( _|_ ` C ) vH ( C i^i A ) ) |
7 |
|
golem1.7 |
|- D = ( ( _|_ ` B ) vH ( B i^i A ) ) |
8 |
|
golem1.8 |
|- R = ( ( _|_ ` C ) vH ( C i^i B ) ) |
9 |
|
golem1.9 |
|- S = ( ( _|_ ` A ) vH ( A i^i C ) ) |
10 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
11 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
12 |
10 11
|
chjcli |
|- ( ( _|_ ` A ) vH ( A i^i B ) ) e. CH |
13 |
4 12
|
eqeltri |
|- F e. CH |
14 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
15 |
2 3
|
chincli |
|- ( B i^i C ) e. CH |
16 |
14 15
|
chjcli |
|- ( ( _|_ ` B ) vH ( B i^i C ) ) e. CH |
17 |
5 16
|
eqeltri |
|- G e. CH |
18 |
3
|
choccli |
|- ( _|_ ` C ) e. CH |
19 |
3 1
|
chincli |
|- ( C i^i A ) e. CH |
20 |
18 19
|
chjcli |
|- ( ( _|_ ` C ) vH ( C i^i A ) ) e. CH |
21 |
6 20
|
eqeltri |
|- H e. CH |
22 |
13 17 21
|
stm1add3i |
|- ( f e. States -> ( ( f ` ( ( F i^i G ) i^i H ) ) = 1 -> ( ( ( f ` F ) + ( f ` G ) ) + ( f ` H ) ) = 3 ) ) |
23 |
1 2 3 4 5 6 7 8 9
|
golem1 |
|- ( f e. States -> ( ( ( f ` F ) + ( f ` G ) ) + ( f ` H ) ) = ( ( ( f ` D ) + ( f ` R ) ) + ( f ` S ) ) ) |
24 |
23
|
eqeq1d |
|- ( f e. States -> ( ( ( ( f ` F ) + ( f ` G ) ) + ( f ` H ) ) = 3 <-> ( ( ( f ` D ) + ( f ` R ) ) + ( f ` S ) ) = 3 ) ) |
25 |
22 24
|
sylibd |
|- ( f e. States -> ( ( f ` ( ( F i^i G ) i^i H ) ) = 1 -> ( ( ( f ` D ) + ( f ` R ) ) + ( f ` S ) ) = 3 ) ) |
26 |
2 1
|
chincli |
|- ( B i^i A ) e. CH |
27 |
14 26
|
chjcli |
|- ( ( _|_ ` B ) vH ( B i^i A ) ) e. CH |
28 |
7 27
|
eqeltri |
|- D e. CH |
29 |
3 2
|
chincli |
|- ( C i^i B ) e. CH |
30 |
18 29
|
chjcli |
|- ( ( _|_ ` C ) vH ( C i^i B ) ) e. CH |
31 |
8 30
|
eqeltri |
|- R e. CH |
32 |
1 3
|
chincli |
|- ( A i^i C ) e. CH |
33 |
10 32
|
chjcli |
|- ( ( _|_ ` A ) vH ( A i^i C ) ) e. CH |
34 |
9 33
|
eqeltri |
|- S e. CH |
35 |
28 31 34
|
stadd3i |
|- ( f e. States -> ( ( ( ( f ` D ) + ( f ` R ) ) + ( f ` S ) ) = 3 -> ( f ` D ) = 1 ) ) |
36 |
25 35
|
syld |
|- ( f e. States -> ( ( f ` ( ( F i^i G ) i^i H ) ) = 1 -> ( f ` D ) = 1 ) ) |