Step |
Hyp |
Ref |
Expression |
1 |
|
goeq.1 |
|- A e. CH |
2 |
|
goeq.2 |
|- B e. CH |
3 |
|
goeq.3 |
|- C e. CH |
4 |
|
goeq.4 |
|- F = ( ( _|_ ` A ) vH ( A i^i B ) ) |
5 |
|
goeq.5 |
|- G = ( ( _|_ ` B ) vH ( B i^i C ) ) |
6 |
|
goeq.6 |
|- H = ( ( _|_ ` C ) vH ( C i^i A ) ) |
7 |
|
goeq.7 |
|- D = ( ( _|_ ` B ) vH ( B i^i A ) ) |
8 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
9 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
10 |
8 9
|
chjcli |
|- ( ( _|_ ` A ) vH ( A i^i B ) ) e. CH |
11 |
4 10
|
eqeltri |
|- F e. CH |
12 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
13 |
2 3
|
chincli |
|- ( B i^i C ) e. CH |
14 |
12 13
|
chjcli |
|- ( ( _|_ ` B ) vH ( B i^i C ) ) e. CH |
15 |
5 14
|
eqeltri |
|- G e. CH |
16 |
11 15
|
chincli |
|- ( F i^i G ) e. CH |
17 |
3
|
choccli |
|- ( _|_ ` C ) e. CH |
18 |
3 1
|
chincli |
|- ( C i^i A ) e. CH |
19 |
17 18
|
chjcli |
|- ( ( _|_ ` C ) vH ( C i^i A ) ) e. CH |
20 |
6 19
|
eqeltri |
|- H e. CH |
21 |
16 20
|
chincli |
|- ( ( F i^i G ) i^i H ) e. CH |
22 |
2 1
|
chincli |
|- ( B i^i A ) e. CH |
23 |
12 22
|
chjcli |
|- ( ( _|_ ` B ) vH ( B i^i A ) ) e. CH |
24 |
7 23
|
eqeltri |
|- D e. CH |
25 |
21 24
|
stri |
|- ( A. f e. States ( ( f ` ( ( F i^i G ) i^i H ) ) = 1 -> ( f ` D ) = 1 ) -> ( ( F i^i G ) i^i H ) C_ D ) |
26 |
|
eqid |
|- ( ( _|_ ` C ) vH ( C i^i B ) ) = ( ( _|_ ` C ) vH ( C i^i B ) ) |
27 |
|
eqid |
|- ( ( _|_ ` A ) vH ( A i^i C ) ) = ( ( _|_ ` A ) vH ( A i^i C ) ) |
28 |
1 2 3 4 5 6 7 26 27
|
golem2 |
|- ( f e. States -> ( ( f ` ( ( F i^i G ) i^i H ) ) = 1 -> ( f ` D ) = 1 ) ) |
29 |
25 28
|
mprg |
|- ( ( F i^i G ) i^i H ) C_ D |