Metamath Proof Explorer


Theorem goeqi

Description: Godowski's equation, shown here as a variant equivalent to Equation SF of Godowski p. 730. (Contributed by NM, 10-Nov-2002) (New usage is discouraged.)

Ref Expression
Hypotheses goeq.1
|- A e. CH
goeq.2
|- B e. CH
goeq.3
|- C e. CH
goeq.4
|- F = ( ( _|_ ` A ) vH ( A i^i B ) )
goeq.5
|- G = ( ( _|_ ` B ) vH ( B i^i C ) )
goeq.6
|- H = ( ( _|_ ` C ) vH ( C i^i A ) )
goeq.7
|- D = ( ( _|_ ` B ) vH ( B i^i A ) )
Assertion goeqi
|- ( ( F i^i G ) i^i H ) C_ D

Proof

Step Hyp Ref Expression
1 goeq.1
 |-  A e. CH
2 goeq.2
 |-  B e. CH
3 goeq.3
 |-  C e. CH
4 goeq.4
 |-  F = ( ( _|_ ` A ) vH ( A i^i B ) )
5 goeq.5
 |-  G = ( ( _|_ ` B ) vH ( B i^i C ) )
6 goeq.6
 |-  H = ( ( _|_ ` C ) vH ( C i^i A ) )
7 goeq.7
 |-  D = ( ( _|_ ` B ) vH ( B i^i A ) )
8 1 choccli
 |-  ( _|_ ` A ) e. CH
9 1 2 chincli
 |-  ( A i^i B ) e. CH
10 8 9 chjcli
 |-  ( ( _|_ ` A ) vH ( A i^i B ) ) e. CH
11 4 10 eqeltri
 |-  F e. CH
12 2 choccli
 |-  ( _|_ ` B ) e. CH
13 2 3 chincli
 |-  ( B i^i C ) e. CH
14 12 13 chjcli
 |-  ( ( _|_ ` B ) vH ( B i^i C ) ) e. CH
15 5 14 eqeltri
 |-  G e. CH
16 11 15 chincli
 |-  ( F i^i G ) e. CH
17 3 choccli
 |-  ( _|_ ` C ) e. CH
18 3 1 chincli
 |-  ( C i^i A ) e. CH
19 17 18 chjcli
 |-  ( ( _|_ ` C ) vH ( C i^i A ) ) e. CH
20 6 19 eqeltri
 |-  H e. CH
21 16 20 chincli
 |-  ( ( F i^i G ) i^i H ) e. CH
22 2 1 chincli
 |-  ( B i^i A ) e. CH
23 12 22 chjcli
 |-  ( ( _|_ ` B ) vH ( B i^i A ) ) e. CH
24 7 23 eqeltri
 |-  D e. CH
25 21 24 stri
 |-  ( A. f e. States ( ( f ` ( ( F i^i G ) i^i H ) ) = 1 -> ( f ` D ) = 1 ) -> ( ( F i^i G ) i^i H ) C_ D )
26 eqid
 |-  ( ( _|_ ` C ) vH ( C i^i B ) ) = ( ( _|_ ` C ) vH ( C i^i B ) )
27 eqid
 |-  ( ( _|_ ` A ) vH ( A i^i C ) ) = ( ( _|_ ` A ) vH ( A i^i C ) )
28 1 2 3 4 5 6 7 26 27 golem2
 |-  ( f e. States -> ( ( f ` ( ( F i^i G ) i^i H ) ) = 1 -> ( f ` D ) = 1 ) )
29 25 28 mprg
 |-  ( ( F i^i G ) i^i H ) C_ D