Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
|- ( K e. NN -> K e. RR ) |
2 |
|
3re |
|- 3 e. RR |
3 |
2
|
a1i |
|- ( K e. NN -> 3 e. RR ) |
4 |
3 1
|
remulcld |
|- ( K e. NN -> ( 3 x. K ) e. RR ) |
5 |
4
|
rehalfcld |
|- ( K e. NN -> ( ( 3 x. K ) / 2 ) e. RR ) |
6 |
5
|
ceilcld |
|- ( K e. NN -> ( |^ ` ( ( 3 x. K ) / 2 ) ) e. ZZ ) |
7 |
6
|
zred |
|- ( K e. NN -> ( |^ ` ( ( 3 x. K ) / 2 ) ) e. RR ) |
8 |
|
2re |
|- 2 e. RR |
9 |
8
|
a1i |
|- ( K e. NN -> 2 e. RR ) |
10 |
|
nnrp |
|- ( K e. NN -> K e. RR+ ) |
11 |
|
2lt3 |
|- 2 < 3 |
12 |
11
|
a1i |
|- ( K e. NN -> 2 < 3 ) |
13 |
9 3 10 12
|
ltmul1dd |
|- ( K e. NN -> ( 2 x. K ) < ( 3 x. K ) ) |
14 |
|
2pos |
|- 0 < 2 |
15 |
14
|
a1i |
|- ( K e. NN -> 0 < 2 ) |
16 |
|
ltmuldiv2 |
|- ( ( K e. RR /\ ( 3 x. K ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. K ) < ( 3 x. K ) <-> K < ( ( 3 x. K ) / 2 ) ) ) |
17 |
1 4 9 15 16
|
syl112anc |
|- ( K e. NN -> ( ( 2 x. K ) < ( 3 x. K ) <-> K < ( ( 3 x. K ) / 2 ) ) ) |
18 |
13 17
|
mpbid |
|- ( K e. NN -> K < ( ( 3 x. K ) / 2 ) ) |
19 |
5
|
ceilged |
|- ( K e. NN -> ( ( 3 x. K ) / 2 ) <_ ( |^ ` ( ( 3 x. K ) / 2 ) ) ) |
20 |
1 5 7 18 19
|
ltletrd |
|- ( K e. NN -> K < ( |^ ` ( ( 3 x. K ) / 2 ) ) ) |