| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) |
| 2 |
|
3re |
⊢ 3 ∈ ℝ |
| 3 |
2
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℝ ) |
| 4 |
3 1
|
remulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℝ ) |
| 5 |
4
|
rehalfcld |
⊢ ( 𝐾 ∈ ℕ → ( ( 3 · 𝐾 ) / 2 ) ∈ ℝ ) |
| 6 |
5
|
ceilcld |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ∈ ℤ ) |
| 7 |
6
|
zred |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ∈ ℝ ) |
| 8 |
|
2re |
⊢ 2 ∈ ℝ |
| 9 |
8
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℝ ) |
| 10 |
|
nnrp |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ+ ) |
| 11 |
|
2lt3 |
⊢ 2 < 3 |
| 12 |
11
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 2 < 3 ) |
| 13 |
9 3 10 12
|
ltmul1dd |
⊢ ( 𝐾 ∈ ℕ → ( 2 · 𝐾 ) < ( 3 · 𝐾 ) ) |
| 14 |
|
2pos |
⊢ 0 < 2 |
| 15 |
14
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 0 < 2 ) |
| 16 |
|
ltmuldiv2 |
⊢ ( ( 𝐾 ∈ ℝ ∧ ( 3 · 𝐾 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝐾 ) < ( 3 · 𝐾 ) ↔ 𝐾 < ( ( 3 · 𝐾 ) / 2 ) ) ) |
| 17 |
1 4 9 15 16
|
syl112anc |
⊢ ( 𝐾 ∈ ℕ → ( ( 2 · 𝐾 ) < ( 3 · 𝐾 ) ↔ 𝐾 < ( ( 3 · 𝐾 ) / 2 ) ) ) |
| 18 |
13 17
|
mpbid |
⊢ ( 𝐾 ∈ ℕ → 𝐾 < ( ( 3 · 𝐾 ) / 2 ) ) |
| 19 |
5
|
ceilged |
⊢ ( 𝐾 ∈ ℕ → ( ( 3 · 𝐾 ) / 2 ) ≤ ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ) |
| 20 |
1 5 7 18 19
|
ltletrd |
⊢ ( 𝐾 ∈ ℕ → 𝐾 < ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ) |