Step |
Hyp |
Ref |
Expression |
1 |
|
gpg3kgrtriex.n |
⊢ 𝑁 = ( 3 · 𝐾 ) |
2 |
|
nnre |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) |
3 |
|
3rp |
⊢ 3 ∈ ℝ+ |
4 |
3
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℝ+ ) |
5 |
|
nnrp |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ+ ) |
6 |
4 5
|
rpmulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℝ+ ) |
7 |
1 6
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
8 |
|
modaddmod |
⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) = ( ( 𝐾 + 𝐾 ) mod 𝑁 ) ) |
9 |
2 2 7 8
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ → ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) = ( ( 𝐾 + 𝐾 ) mod 𝑁 ) ) |
10 |
|
nncn |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℂ ) |
11 |
10
|
2timesd |
⊢ ( 𝐾 ∈ ℕ → ( 2 · 𝐾 ) = ( 𝐾 + 𝐾 ) ) |
12 |
11
|
eqcomd |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 + 𝐾 ) = ( 2 · 𝐾 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ → ( ( 𝐾 + 𝐾 ) mod 𝑁 ) = ( ( 2 · 𝐾 ) mod 𝑁 ) ) |
14 |
|
2cnd |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℂ ) |
15 |
14 10
|
adddirp1d |
⊢ ( 𝐾 ∈ ℕ → ( ( 2 + 1 ) · 𝐾 ) = ( ( 2 · 𝐾 ) + 𝐾 ) ) |
16 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
17 |
16
|
oveq1i |
⊢ ( ( 2 + 1 ) · 𝐾 ) = ( 3 · 𝐾 ) |
18 |
15 17
|
eqtr3di |
⊢ ( 𝐾 ∈ ℕ → ( ( 2 · 𝐾 ) + 𝐾 ) = ( 3 · 𝐾 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ → ( ( ( 2 · 𝐾 ) + 𝐾 ) mod 𝑁 ) = ( ( 3 · 𝐾 ) mod 𝑁 ) ) |
20 |
1
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 𝑁 = ( 3 · 𝐾 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝐾 ∈ ℕ → ( ( 3 · 𝐾 ) mod 𝑁 ) = ( ( 3 · 𝐾 ) mod ( 3 · 𝐾 ) ) ) |
22 |
|
modid0 |
⊢ ( ( 3 · 𝐾 ) ∈ ℝ+ → ( ( 3 · 𝐾 ) mod ( 3 · 𝐾 ) ) = 0 ) |
23 |
6 22
|
syl |
⊢ ( 𝐾 ∈ ℕ → ( ( 3 · 𝐾 ) mod ( 3 · 𝐾 ) ) = 0 ) |
24 |
19 21 23
|
3eqtrd |
⊢ ( 𝐾 ∈ ℕ → ( ( ( 2 · 𝐾 ) + 𝐾 ) mod 𝑁 ) = 0 ) |
25 |
|
2nn |
⊢ 2 ∈ ℕ |
26 |
25
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℕ ) |
27 |
|
id |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ ) |
28 |
26 27
|
nnmulcld |
⊢ ( 𝐾 ∈ ℕ → ( 2 · 𝐾 ) ∈ ℕ ) |
29 |
28
|
nnzd |
⊢ ( 𝐾 ∈ ℕ → ( 2 · 𝐾 ) ∈ ℤ ) |
30 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
31 |
|
3nn |
⊢ 3 ∈ ℕ |
32 |
31
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℕ ) |
33 |
32 27
|
nnmulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℕ ) |
34 |
1 33
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ℕ ) |
35 |
|
summodnegmod |
⊢ ( ( ( 2 · 𝐾 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( ( 2 · 𝐾 ) + 𝐾 ) mod 𝑁 ) = 0 ↔ ( ( 2 · 𝐾 ) mod 𝑁 ) = ( - 𝐾 mod 𝑁 ) ) ) |
36 |
29 30 34 35
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ → ( ( ( ( 2 · 𝐾 ) + 𝐾 ) mod 𝑁 ) = 0 ↔ ( ( 2 · 𝐾 ) mod 𝑁 ) = ( - 𝐾 mod 𝑁 ) ) ) |
37 |
24 36
|
mpbid |
⊢ ( 𝐾 ∈ ℕ → ( ( 2 · 𝐾 ) mod 𝑁 ) = ( - 𝐾 mod 𝑁 ) ) |
38 |
9 13 37
|
3eqtrrd |
⊢ ( 𝐾 ∈ ℕ → ( - 𝐾 mod 𝑁 ) = ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) ) |