| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpg3kgrtriex.n |
⊢ 𝑁 = ( 3 · 𝐾 ) |
| 2 |
|
3z |
⊢ 3 ∈ ℤ |
| 3 |
2
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℤ ) |
| 4 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
| 5 |
3 4
|
zmulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℤ ) |
| 6 |
|
3t1e3 |
⊢ ( 3 · 1 ) = 3 |
| 7 |
|
nnge1 |
⊢ ( 𝐾 ∈ ℕ → 1 ≤ 𝐾 ) |
| 8 |
|
1re |
⊢ 1 ∈ ℝ |
| 9 |
|
nnre |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) |
| 10 |
|
3re |
⊢ 3 ∈ ℝ |
| 11 |
|
3pos |
⊢ 0 < 3 |
| 12 |
10 11
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 0 < 3 ) |
| 13 |
12
|
a1i |
⊢ ( 𝐾 ∈ ℕ → ( 3 ∈ ℝ ∧ 0 < 3 ) ) |
| 14 |
|
lemul2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ) → ( 1 ≤ 𝐾 ↔ ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) ) |
| 15 |
8 9 13 14
|
mp3an2i |
⊢ ( 𝐾 ∈ ℕ → ( 1 ≤ 𝐾 ↔ ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) ) |
| 16 |
7 15
|
mpbid |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) |
| 17 |
6 16
|
eqbrtrrid |
⊢ ( 𝐾 ∈ ℕ → 3 ≤ ( 3 · 𝐾 ) ) |
| 18 |
|
eluz2 |
⊢ ( ( 3 · 𝐾 ) ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ ( 3 · 𝐾 ) ∈ ℤ ∧ 3 ≤ ( 3 · 𝐾 ) ) ) |
| 19 |
3 5 17 18
|
syl3anbrc |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ( ℤ≥ ‘ 3 ) ) |
| 20 |
1 19
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |