Step |
Hyp |
Ref |
Expression |
1 |
|
gpg3kgrtriex.n |
⊢ 𝑁 = ( 3 · 𝐾 ) |
2 |
|
3z |
⊢ 3 ∈ ℤ |
3 |
2
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℤ ) |
4 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
5 |
3 4
|
zmulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℤ ) |
6 |
|
3t1e3 |
⊢ ( 3 · 1 ) = 3 |
7 |
|
nnge1 |
⊢ ( 𝐾 ∈ ℕ → 1 ≤ 𝐾 ) |
8 |
|
1re |
⊢ 1 ∈ ℝ |
9 |
|
nnre |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) |
10 |
|
3re |
⊢ 3 ∈ ℝ |
11 |
|
3pos |
⊢ 0 < 3 |
12 |
10 11
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 0 < 3 ) |
13 |
12
|
a1i |
⊢ ( 𝐾 ∈ ℕ → ( 3 ∈ ℝ ∧ 0 < 3 ) ) |
14 |
|
lemul2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ) → ( 1 ≤ 𝐾 ↔ ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) ) |
15 |
8 9 13 14
|
mp3an2i |
⊢ ( 𝐾 ∈ ℕ → ( 1 ≤ 𝐾 ↔ ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) ) |
16 |
7 15
|
mpbid |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) |
17 |
6 16
|
eqbrtrrid |
⊢ ( 𝐾 ∈ ℕ → 3 ≤ ( 3 · 𝐾 ) ) |
18 |
|
eluz2 |
⊢ ( ( 3 · 𝐾 ) ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ ( 3 · 𝐾 ) ∈ ℤ ∧ 3 ≤ ( 3 · 𝐾 ) ) ) |
19 |
3 5 17 18
|
syl3anbrc |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ( ℤ≥ ‘ 3 ) ) |
20 |
1 19
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |