Metamath Proof Explorer


Theorem gpg3kgrtriexlem3

Description: Lemma 3 for gpg3kgrtriex . (Contributed by AV, 1-Oct-2025)

Ref Expression
Hypothesis gpg3kgrtriex.n 𝑁 = ( 3 · 𝐾 )
Assertion gpg3kgrtriexlem3 ( 𝐾 ∈ ℕ → 𝑁 ∈ ( ℤ ‘ 3 ) )

Proof

Step Hyp Ref Expression
1 gpg3kgrtriex.n 𝑁 = ( 3 · 𝐾 )
2 3z 3 ∈ ℤ
3 2 a1i ( 𝐾 ∈ ℕ → 3 ∈ ℤ )
4 nnz ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ )
5 3 4 zmulcld ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℤ )
6 3t1e3 ( 3 · 1 ) = 3
7 nnge1 ( 𝐾 ∈ ℕ → 1 ≤ 𝐾 )
8 1re 1 ∈ ℝ
9 nnre ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ )
10 3re 3 ∈ ℝ
11 3pos 0 < 3
12 10 11 pm3.2i ( 3 ∈ ℝ ∧ 0 < 3 )
13 12 a1i ( 𝐾 ∈ ℕ → ( 3 ∈ ℝ ∧ 0 < 3 ) )
14 lemul2 ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ) → ( 1 ≤ 𝐾 ↔ ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) )
15 8 9 13 14 mp3an2i ( 𝐾 ∈ ℕ → ( 1 ≤ 𝐾 ↔ ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) )
16 7 15 mpbid ( 𝐾 ∈ ℕ → ( 3 · 1 ) ≤ ( 3 · 𝐾 ) )
17 6 16 eqbrtrrid ( 𝐾 ∈ ℕ → 3 ≤ ( 3 · 𝐾 ) )
18 eluz2 ( ( 3 · 𝐾 ) ∈ ( ℤ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ ( 3 · 𝐾 ) ∈ ℤ ∧ 3 ≤ ( 3 · 𝐾 ) ) )
19 3 5 17 18 syl3anbrc ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ( ℤ ‘ 3 ) )
20 1 19 eqeltrid ( 𝐾 ∈ ℕ → 𝑁 ∈ ( ℤ ‘ 3 ) )