Step |
Hyp |
Ref |
Expression |
1 |
|
gpg3kgrtriex.n |
⊢ 𝑁 = ( 3 · 𝐾 ) |
2 |
|
id |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ ) |
3 |
1
|
oveq1i |
⊢ ( 𝑁 / 2 ) = ( ( 3 · 𝐾 ) / 2 ) |
4 |
|
3re |
⊢ 3 ∈ ℝ |
5 |
4
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℝ ) |
6 |
|
nnre |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) |
7 |
5 6
|
remulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℝ ) |
8 |
7
|
rehalfcld |
⊢ ( 𝐾 ∈ ℕ → ( ( 3 · 𝐾 ) / 2 ) ∈ ℝ ) |
9 |
3 8
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ ) |
10 |
9
|
ceilcld |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
11 |
|
1red |
⊢ ( 𝐾 ∈ ℕ → 1 ∈ ℝ ) |
12 |
1 7
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ℝ ) |
13 |
12
|
rehalfcld |
⊢ ( 𝐾 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ ) |
14 |
13
|
ceilcld |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
15 |
14
|
zred |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
16 |
|
nnge1 |
⊢ ( 𝐾 ∈ ℕ → 1 ≤ 𝐾 ) |
17 |
8
|
ceilcld |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ∈ ℤ ) |
18 |
17
|
zred |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ∈ ℝ ) |
19 |
|
gpg3kgrtriexlem1 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 < ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ) |
20 |
6 18 19
|
ltled |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ≤ ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ) |
21 |
3
|
fveq2i |
⊢ ( ⌈ ‘ ( 𝑁 / 2 ) ) = ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) |
22 |
20 21
|
breqtrrdi |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
23 |
11 6 15 16 22
|
letrd |
⊢ ( 𝐾 ∈ ℕ → 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
24 |
|
elnnz1 |
⊢ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ↔ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ∧ 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
25 |
10 23 24
|
sylanbrc |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ) |
26 |
19 21
|
breqtrrdi |
⊢ ( 𝐾 ∈ ℕ → 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
27 |
|
elfzo1 |
⊢ ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ↔ ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
28 |
2 25 26 27
|
syl3anbrc |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |