| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpg3kgrtriex.n |
⊢ 𝑁 = ( 3 · 𝐾 ) |
| 2 |
|
id |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ ) |
| 3 |
1
|
oveq1i |
⊢ ( 𝑁 / 2 ) = ( ( 3 · 𝐾 ) / 2 ) |
| 4 |
|
3re |
⊢ 3 ∈ ℝ |
| 5 |
4
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℝ ) |
| 6 |
|
nnre |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) |
| 7 |
5 6
|
remulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℝ ) |
| 8 |
7
|
rehalfcld |
⊢ ( 𝐾 ∈ ℕ → ( ( 3 · 𝐾 ) / 2 ) ∈ ℝ ) |
| 9 |
3 8
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ ) |
| 10 |
9
|
ceilcld |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
| 11 |
|
1red |
⊢ ( 𝐾 ∈ ℕ → 1 ∈ ℝ ) |
| 12 |
1 7
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 13 |
12
|
rehalfcld |
⊢ ( 𝐾 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ ) |
| 14 |
13
|
ceilcld |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
| 15 |
14
|
zred |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
| 16 |
|
nnge1 |
⊢ ( 𝐾 ∈ ℕ → 1 ≤ 𝐾 ) |
| 17 |
8
|
ceilcld |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ∈ ℤ ) |
| 18 |
17
|
zred |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ∈ ℝ ) |
| 19 |
|
gpg3kgrtriexlem1 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 < ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ) |
| 20 |
6 18 19
|
ltled |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ≤ ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ) |
| 21 |
3
|
fveq2i |
⊢ ( ⌈ ‘ ( 𝑁 / 2 ) ) = ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) |
| 22 |
20 21
|
breqtrrdi |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 23 |
11 6 15 16 22
|
letrd |
⊢ ( 𝐾 ∈ ℕ → 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 24 |
|
elnnz1 |
⊢ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ↔ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ∧ 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 25 |
10 23 24
|
sylanbrc |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ) |
| 26 |
19 21
|
breqtrrdi |
⊢ ( 𝐾 ∈ ℕ → 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 27 |
|
elfzo1 |
⊢ ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ↔ ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 28 |
2 25 26 27
|
syl3anbrc |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |