Step |
Hyp |
Ref |
Expression |
1 |
|
gpg3kgrtriex.n |
|- N = ( 3 x. K ) |
2 |
|
id |
|- ( K e. NN -> K e. NN ) |
3 |
1
|
oveq1i |
|- ( N / 2 ) = ( ( 3 x. K ) / 2 ) |
4 |
|
3re |
|- 3 e. RR |
5 |
4
|
a1i |
|- ( K e. NN -> 3 e. RR ) |
6 |
|
nnre |
|- ( K e. NN -> K e. RR ) |
7 |
5 6
|
remulcld |
|- ( K e. NN -> ( 3 x. K ) e. RR ) |
8 |
7
|
rehalfcld |
|- ( K e. NN -> ( ( 3 x. K ) / 2 ) e. RR ) |
9 |
3 8
|
eqeltrid |
|- ( K e. NN -> ( N / 2 ) e. RR ) |
10 |
9
|
ceilcld |
|- ( K e. NN -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
11 |
|
1red |
|- ( K e. NN -> 1 e. RR ) |
12 |
1 7
|
eqeltrid |
|- ( K e. NN -> N e. RR ) |
13 |
12
|
rehalfcld |
|- ( K e. NN -> ( N / 2 ) e. RR ) |
14 |
13
|
ceilcld |
|- ( K e. NN -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
15 |
14
|
zred |
|- ( K e. NN -> ( |^ ` ( N / 2 ) ) e. RR ) |
16 |
|
nnge1 |
|- ( K e. NN -> 1 <_ K ) |
17 |
8
|
ceilcld |
|- ( K e. NN -> ( |^ ` ( ( 3 x. K ) / 2 ) ) e. ZZ ) |
18 |
17
|
zred |
|- ( K e. NN -> ( |^ ` ( ( 3 x. K ) / 2 ) ) e. RR ) |
19 |
|
gpg3kgrtriexlem1 |
|- ( K e. NN -> K < ( |^ ` ( ( 3 x. K ) / 2 ) ) ) |
20 |
6 18 19
|
ltled |
|- ( K e. NN -> K <_ ( |^ ` ( ( 3 x. K ) / 2 ) ) ) |
21 |
3
|
fveq2i |
|- ( |^ ` ( N / 2 ) ) = ( |^ ` ( ( 3 x. K ) / 2 ) ) |
22 |
20 21
|
breqtrrdi |
|- ( K e. NN -> K <_ ( |^ ` ( N / 2 ) ) ) |
23 |
11 6 15 16 22
|
letrd |
|- ( K e. NN -> 1 <_ ( |^ ` ( N / 2 ) ) ) |
24 |
|
elnnz1 |
|- ( ( |^ ` ( N / 2 ) ) e. NN <-> ( ( |^ ` ( N / 2 ) ) e. ZZ /\ 1 <_ ( |^ ` ( N / 2 ) ) ) ) |
25 |
10 23 24
|
sylanbrc |
|- ( K e. NN -> ( |^ ` ( N / 2 ) ) e. NN ) |
26 |
19 21
|
breqtrrdi |
|- ( K e. NN -> K < ( |^ ` ( N / 2 ) ) ) |
27 |
|
elfzo1 |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) <-> ( K e. NN /\ ( |^ ` ( N / 2 ) ) e. NN /\ K < ( |^ ` ( N / 2 ) ) ) ) |
28 |
2 25 26 27
|
syl3anbrc |
|- ( K e. NN -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |