| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpg3kgrtriex.n |
|- N = ( 3 x. K ) |
| 2 |
|
3nn |
|- 3 e. NN |
| 3 |
2
|
a1i |
|- ( K e. NN -> 3 e. NN ) |
| 4 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 5 |
|
eluzfz2 |
|- ( 2 e. ( ZZ>= ` 1 ) -> 2 e. ( 1 ... 2 ) ) |
| 6 |
4 5
|
ax-mp |
|- 2 e. ( 1 ... 2 ) |
| 7 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 8 |
7
|
oveq2i |
|- ( 1 ... ( 3 - 1 ) ) = ( 1 ... 2 ) |
| 9 |
6 8
|
eleqtrri |
|- 2 e. ( 1 ... ( 3 - 1 ) ) |
| 10 |
9
|
a1i |
|- ( K e. NN -> 2 e. ( 1 ... ( 3 - 1 ) ) ) |
| 11 |
|
fzm1ndvds |
|- ( ( 3 e. NN /\ 2 e. ( 1 ... ( 3 - 1 ) ) ) -> -. 3 || 2 ) |
| 12 |
3 10 11
|
syl2anc |
|- ( K e. NN -> -. 3 || 2 ) |
| 13 |
|
3z |
|- 3 e. ZZ |
| 14 |
13
|
a1i |
|- ( K e. NN -> 3 e. ZZ ) |
| 15 |
|
2z |
|- 2 e. ZZ |
| 16 |
15
|
a1i |
|- ( K e. NN -> 2 e. ZZ ) |
| 17 |
|
nnz |
|- ( K e. NN -> K e. ZZ ) |
| 18 |
|
nnne0 |
|- ( K e. NN -> K =/= 0 ) |
| 19 |
|
dvdsmulcr |
|- ( ( 3 e. ZZ /\ 2 e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( 3 x. K ) || ( 2 x. K ) <-> 3 || 2 ) ) |
| 20 |
14 16 17 18 19
|
syl112anc |
|- ( K e. NN -> ( ( 3 x. K ) || ( 2 x. K ) <-> 3 || 2 ) ) |
| 21 |
12 20
|
mtbird |
|- ( K e. NN -> -. ( 3 x. K ) || ( 2 x. K ) ) |
| 22 |
1
|
breq1i |
|- ( N || ( 2 x. K ) <-> ( 3 x. K ) || ( 2 x. K ) ) |
| 23 |
21 22
|
sylnibr |
|- ( K e. NN -> -. N || ( 2 x. K ) ) |
| 24 |
|
id |
|- ( K e. NN -> K e. NN ) |
| 25 |
3 24
|
nnmulcld |
|- ( K e. NN -> ( 3 x. K ) e. NN ) |
| 26 |
1 25
|
eqeltrid |
|- ( K e. NN -> N e. NN ) |
| 27 |
|
2nn |
|- 2 e. NN |
| 28 |
27
|
a1i |
|- ( K e. NN -> 2 e. NN ) |
| 29 |
28 24
|
nnmulcld |
|- ( K e. NN -> ( 2 x. K ) e. NN ) |
| 30 |
29
|
nnzd |
|- ( K e. NN -> ( 2 x. K ) e. ZZ ) |
| 31 |
|
dvdsval3 |
|- ( ( N e. NN /\ ( 2 x. K ) e. ZZ ) -> ( N || ( 2 x. K ) <-> ( ( 2 x. K ) mod N ) = 0 ) ) |
| 32 |
26 30 31
|
syl2anc |
|- ( K e. NN -> ( N || ( 2 x. K ) <-> ( ( 2 x. K ) mod N ) = 0 ) ) |
| 33 |
|
nncn |
|- ( K e. NN -> K e. CC ) |
| 34 |
33
|
2timesd |
|- ( K e. NN -> ( 2 x. K ) = ( K + K ) ) |
| 35 |
34
|
oveq1d |
|- ( K e. NN -> ( ( 2 x. K ) mod N ) = ( ( K + K ) mod N ) ) |
| 36 |
35
|
eqeq1d |
|- ( K e. NN -> ( ( ( 2 x. K ) mod N ) = 0 <-> ( ( K + K ) mod N ) = 0 ) ) |
| 37 |
|
summodnegmod |
|- ( ( K e. ZZ /\ K e. ZZ /\ N e. NN ) -> ( ( ( K + K ) mod N ) = 0 <-> ( K mod N ) = ( -u K mod N ) ) ) |
| 38 |
17 17 26 37
|
syl3anc |
|- ( K e. NN -> ( ( ( K + K ) mod N ) = 0 <-> ( K mod N ) = ( -u K mod N ) ) ) |
| 39 |
32 36 38
|
3bitrd |
|- ( K e. NN -> ( N || ( 2 x. K ) <-> ( K mod N ) = ( -u K mod N ) ) ) |
| 40 |
23 39
|
mtbid |
|- ( K e. NN -> -. ( K mod N ) = ( -u K mod N ) ) |
| 41 |
40
|
neqned |
|- ( K e. NN -> ( K mod N ) =/= ( -u K mod N ) ) |