Metamath Proof Explorer


Theorem gpg3kgrtriexlem5

Description: Lemma 5 for gpg3kgrtriex . (Contributed by AV, 1-Oct-2025)

Ref Expression
Hypothesis gpg3kgrtriex.n N = 3 K
Assertion gpg3kgrtriexlem5 K K mod N K mod N

Proof

Step Hyp Ref Expression
1 gpg3kgrtriex.n N = 3 K
2 3nn 3
3 2 a1i K 3
4 2eluzge1 2 1
5 eluzfz2 2 1 2 1 2
6 4 5 ax-mp 2 1 2
7 3m1e2 3 1 = 2
8 7 oveq2i 1 3 1 = 1 2
9 6 8 eleqtrri 2 1 3 1
10 9 a1i K 2 1 3 1
11 fzm1ndvds 3 2 1 3 1 ¬ 3 2
12 3 10 11 syl2anc K ¬ 3 2
13 3z 3
14 13 a1i K 3
15 2z 2
16 15 a1i K 2
17 nnz K K
18 nnne0 K K 0
19 dvdsmulcr 3 2 K K 0 3 K 2 K 3 2
20 14 16 17 18 19 syl112anc K 3 K 2 K 3 2
21 12 20 mtbird K ¬ 3 K 2 K
22 1 breq1i N 2 K 3 K 2 K
23 21 22 sylnibr K ¬ N 2 K
24 id K K
25 3 24 nnmulcld K 3 K
26 1 25 eqeltrid K N
27 2nn 2
28 27 a1i K 2
29 28 24 nnmulcld K 2 K
30 29 nnzd K 2 K
31 dvdsval3 N 2 K N 2 K 2 K mod N = 0
32 26 30 31 syl2anc K N 2 K 2 K mod N = 0
33 nncn K K
34 33 2timesd K 2 K = K + K
35 34 oveq1d K 2 K mod N = K + K mod N
36 35 eqeq1d K 2 K mod N = 0 K + K mod N = 0
37 summodnegmod K K N K + K mod N = 0 K mod N = K mod N
38 17 17 26 37 syl3anc K K + K mod N = 0 K mod N = K mod N
39 32 36 38 3bitrd K N 2 K K mod N = K mod N
40 23 39 mtbid K ¬ K mod N = K mod N
41 40 neqned K K mod N K mod N