| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpg3kgrtriex.n |
⊢ 𝑁 = ( 3 · 𝐾 ) |
| 2 |
|
3nn |
⊢ 3 ∈ ℕ |
| 3 |
2
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℕ ) |
| 4 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
| 5 |
|
eluzfz2 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → 2 ∈ ( 1 ... 2 ) ) |
| 6 |
4 5
|
ax-mp |
⊢ 2 ∈ ( 1 ... 2 ) |
| 7 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 8 |
7
|
oveq2i |
⊢ ( 1 ... ( 3 − 1 ) ) = ( 1 ... 2 ) |
| 9 |
6 8
|
eleqtrri |
⊢ 2 ∈ ( 1 ... ( 3 − 1 ) ) |
| 10 |
9
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ( 1 ... ( 3 − 1 ) ) ) |
| 11 |
|
fzm1ndvds |
⊢ ( ( 3 ∈ ℕ ∧ 2 ∈ ( 1 ... ( 3 − 1 ) ) ) → ¬ 3 ∥ 2 ) |
| 12 |
3 10 11
|
syl2anc |
⊢ ( 𝐾 ∈ ℕ → ¬ 3 ∥ 2 ) |
| 13 |
|
3z |
⊢ 3 ∈ ℤ |
| 14 |
13
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℤ ) |
| 15 |
|
2z |
⊢ 2 ∈ ℤ |
| 16 |
15
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℤ ) |
| 17 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
| 18 |
|
nnne0 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ≠ 0 ) |
| 19 |
|
dvdsmulcr |
⊢ ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ∧ ( 𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ) ) → ( ( 3 · 𝐾 ) ∥ ( 2 · 𝐾 ) ↔ 3 ∥ 2 ) ) |
| 20 |
14 16 17 18 19
|
syl112anc |
⊢ ( 𝐾 ∈ ℕ → ( ( 3 · 𝐾 ) ∥ ( 2 · 𝐾 ) ↔ 3 ∥ 2 ) ) |
| 21 |
12 20
|
mtbird |
⊢ ( 𝐾 ∈ ℕ → ¬ ( 3 · 𝐾 ) ∥ ( 2 · 𝐾 ) ) |
| 22 |
1
|
breq1i |
⊢ ( 𝑁 ∥ ( 2 · 𝐾 ) ↔ ( 3 · 𝐾 ) ∥ ( 2 · 𝐾 ) ) |
| 23 |
21 22
|
sylnibr |
⊢ ( 𝐾 ∈ ℕ → ¬ 𝑁 ∥ ( 2 · 𝐾 ) ) |
| 24 |
|
id |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ ) |
| 25 |
3 24
|
nnmulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℕ ) |
| 26 |
1 25
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ℕ ) |
| 27 |
|
2nn |
⊢ 2 ∈ ℕ |
| 28 |
27
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℕ ) |
| 29 |
28 24
|
nnmulcld |
⊢ ( 𝐾 ∈ ℕ → ( 2 · 𝐾 ) ∈ ℕ ) |
| 30 |
29
|
nnzd |
⊢ ( 𝐾 ∈ ℕ → ( 2 · 𝐾 ) ∈ ℤ ) |
| 31 |
|
dvdsval3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 2 · 𝐾 ) ∈ ℤ ) → ( 𝑁 ∥ ( 2 · 𝐾 ) ↔ ( ( 2 · 𝐾 ) mod 𝑁 ) = 0 ) ) |
| 32 |
26 30 31
|
syl2anc |
⊢ ( 𝐾 ∈ ℕ → ( 𝑁 ∥ ( 2 · 𝐾 ) ↔ ( ( 2 · 𝐾 ) mod 𝑁 ) = 0 ) ) |
| 33 |
|
nncn |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℂ ) |
| 34 |
33
|
2timesd |
⊢ ( 𝐾 ∈ ℕ → ( 2 · 𝐾 ) = ( 𝐾 + 𝐾 ) ) |
| 35 |
34
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ → ( ( 2 · 𝐾 ) mod 𝑁 ) = ( ( 𝐾 + 𝐾 ) mod 𝑁 ) ) |
| 36 |
35
|
eqeq1d |
⊢ ( 𝐾 ∈ ℕ → ( ( ( 2 · 𝐾 ) mod 𝑁 ) = 0 ↔ ( ( 𝐾 + 𝐾 ) mod 𝑁 ) = 0 ) ) |
| 37 |
|
summodnegmod |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐾 + 𝐾 ) mod 𝑁 ) = 0 ↔ ( 𝐾 mod 𝑁 ) = ( - 𝐾 mod 𝑁 ) ) ) |
| 38 |
17 17 26 37
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ → ( ( ( 𝐾 + 𝐾 ) mod 𝑁 ) = 0 ↔ ( 𝐾 mod 𝑁 ) = ( - 𝐾 mod 𝑁 ) ) ) |
| 39 |
32 36 38
|
3bitrd |
⊢ ( 𝐾 ∈ ℕ → ( 𝑁 ∥ ( 2 · 𝐾 ) ↔ ( 𝐾 mod 𝑁 ) = ( - 𝐾 mod 𝑁 ) ) ) |
| 40 |
23 39
|
mtbid |
⊢ ( 𝐾 ∈ ℕ → ¬ ( 𝐾 mod 𝑁 ) = ( - 𝐾 mod 𝑁 ) ) |
| 41 |
40
|
neqned |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 mod 𝑁 ) ≠ ( - 𝐾 mod 𝑁 ) ) |