Step |
Hyp |
Ref |
Expression |
1 |
|
gpg3kgrtriex.n |
⊢ 𝑁 = ( 3 · 𝐾 ) |
2 |
|
gpg3kgrtriex.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
3 |
|
gpg3kgrtriex.e |
⊢ 𝐸 = { 〈 1 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( - 𝐾 mod 𝑁 ) 〉 } |
4 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
5 |
|
3nn |
⊢ 3 ∈ ℕ |
6 |
5
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℕ ) |
7 |
|
id |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ ) |
8 |
6 7
|
nnmulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℕ ) |
9 |
1 8
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ℕ ) |
10 |
|
zmodfzo |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
11 |
4 9 10
|
syl2anc |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
12 |
|
opeq2 |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → 〈 0 , 𝑥 〉 = 〈 0 , ( 𝐾 mod 𝑁 ) 〉 ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → ( 𝑥 + 1 ) = ( ( 𝐾 mod 𝑁 ) + 1 ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → ( ( 𝑥 + 1 ) mod 𝑁 ) = ( ( ( 𝐾 mod 𝑁 ) + 1 ) mod 𝑁 ) ) |
15 |
14
|
opeq2d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 = 〈 0 , ( ( ( 𝐾 mod 𝑁 ) + 1 ) mod 𝑁 ) 〉 ) |
16 |
12 15
|
preq12d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 0 , ( ( ( 𝐾 mod 𝑁 ) + 1 ) mod 𝑁 ) 〉 } ) |
17 |
16
|
eqeq2d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → ( 𝐸 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ↔ 𝐸 = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 0 , ( ( ( 𝐾 mod 𝑁 ) + 1 ) mod 𝑁 ) 〉 } ) ) |
18 |
|
opeq2 |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → 〈 1 , 𝑥 〉 = 〈 1 , ( 𝐾 mod 𝑁 ) 〉 ) |
19 |
12 18
|
preq12d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( 𝐾 mod 𝑁 ) 〉 } ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → ( 𝐸 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ↔ 𝐸 = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( 𝐾 mod 𝑁 ) 〉 } ) ) |
21 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → ( 𝑥 + 𝐾 ) = ( ( 𝐾 mod 𝑁 ) + 𝐾 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → ( ( 𝑥 + 𝐾 ) mod 𝑁 ) = ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) ) |
23 |
22
|
opeq2d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 = 〈 1 , ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) 〉 ) |
24 |
18 23
|
preq12d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } = { 〈 1 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) 〉 } ) |
25 |
24
|
eqeq2d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → ( 𝐸 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ↔ 𝐸 = { 〈 1 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) 〉 } ) ) |
26 |
17 20 25
|
3orbi123d |
⊢ ( 𝑥 = ( 𝐾 mod 𝑁 ) → ( ( 𝐸 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝐸 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) ↔ ( 𝐸 = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 0 , ( ( ( 𝐾 mod 𝑁 ) + 1 ) mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( 𝐾 mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 1 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) 〉 } ) ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑥 = ( 𝐾 mod 𝑁 ) ) → ( ( 𝐸 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝐸 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) ↔ ( 𝐸 = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 0 , ( ( ( 𝐾 mod 𝑁 ) + 1 ) mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( 𝐾 mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 1 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) 〉 } ) ) ) |
28 |
1
|
gpg3kgrtriexlem2 |
⊢ ( 𝐾 ∈ ℕ → ( - 𝐾 mod 𝑁 ) = ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) ) |
29 |
28
|
opeq2d |
⊢ ( 𝐾 ∈ ℕ → 〈 1 , ( - 𝐾 mod 𝑁 ) 〉 = 〈 1 , ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) 〉 ) |
30 |
29
|
preq2d |
⊢ ( 𝐾 ∈ ℕ → { 〈 1 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( - 𝐾 mod 𝑁 ) 〉 } = { 〈 1 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) 〉 } ) |
31 |
3 30
|
eqtrid |
⊢ ( 𝐾 ∈ ℕ → 𝐸 = { 〈 1 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) 〉 } ) |
32 |
31
|
3mix3d |
⊢ ( 𝐾 ∈ ℕ → ( 𝐸 = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 0 , ( ( ( 𝐾 mod 𝑁 ) + 1 ) mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 0 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( 𝐾 mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 1 , ( 𝐾 mod 𝑁 ) 〉 , 〈 1 , ( ( ( 𝐾 mod 𝑁 ) + 𝐾 ) mod 𝑁 ) 〉 } ) ) |
33 |
11 27 32
|
rspcedvd |
⊢ ( 𝐾 ∈ ℕ → ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝐸 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝐸 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) ) |
34 |
|
3z |
⊢ 3 ∈ ℤ |
35 |
34
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℤ ) |
36 |
35 4
|
zmulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℤ ) |
37 |
|
3t1e3 |
⊢ ( 3 · 1 ) = 3 |
38 |
|
nnge1 |
⊢ ( 𝐾 ∈ ℕ → 1 ≤ 𝐾 ) |
39 |
|
1red |
⊢ ( 𝐾 ∈ ℕ → 1 ∈ ℝ ) |
40 |
|
nnre |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) |
41 |
|
3re |
⊢ 3 ∈ ℝ |
42 |
|
3pos |
⊢ 0 < 3 |
43 |
41 42
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 0 < 3 ) |
44 |
43
|
a1i |
⊢ ( 𝐾 ∈ ℕ → ( 3 ∈ ℝ ∧ 0 < 3 ) ) |
45 |
|
lemul2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ) → ( 1 ≤ 𝐾 ↔ ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) ) |
46 |
39 40 44 45
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ → ( 1 ≤ 𝐾 ↔ ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) ) |
47 |
38 46
|
mpbid |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 1 ) ≤ ( 3 · 𝐾 ) ) |
48 |
37 47
|
eqbrtrrid |
⊢ ( 𝐾 ∈ ℕ → 3 ≤ ( 3 · 𝐾 ) ) |
49 |
|
eluz2 |
⊢ ( ( 3 · 𝐾 ) ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ ( 3 · 𝐾 ) ∈ ℤ ∧ 3 ≤ ( 3 · 𝐾 ) ) ) |
50 |
35 36 48 49
|
syl3anbrc |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ( ℤ≥ ‘ 3 ) ) |
51 |
1 50
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
52 |
41
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 3 ∈ ℝ ) |
53 |
52 40
|
remulcld |
⊢ ( 𝐾 ∈ ℕ → ( 3 · 𝐾 ) ∈ ℝ ) |
54 |
1 53
|
eqeltrid |
⊢ ( 𝐾 ∈ ℕ → 𝑁 ∈ ℝ ) |
55 |
54
|
rehalfcld |
⊢ ( 𝐾 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℝ ) |
56 |
55
|
ceilcld |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
57 |
56
|
zred |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
58 |
53
|
rehalfcld |
⊢ ( 𝐾 ∈ ℕ → ( ( 3 · 𝐾 ) / 2 ) ∈ ℝ ) |
59 |
58
|
ceilcld |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ∈ ℤ ) |
60 |
59
|
zred |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ∈ ℝ ) |
61 |
|
gpg3kgrtriexlem1 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 < ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ) |
62 |
40 60 61
|
ltled |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ≤ ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) ) |
63 |
1
|
oveq1i |
⊢ ( 𝑁 / 2 ) = ( ( 3 · 𝐾 ) / 2 ) |
64 |
63
|
fveq2i |
⊢ ( ⌈ ‘ ( 𝑁 / 2 ) ) = ( ⌈ ‘ ( ( 3 · 𝐾 ) / 2 ) ) |
65 |
62 64
|
breqtrrdi |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
66 |
39 40 57 38 65
|
letrd |
⊢ ( 𝐾 ∈ ℕ → 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
67 |
|
elnnz1 |
⊢ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ↔ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ∧ 1 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
68 |
56 66 67
|
sylanbrc |
⊢ ( 𝐾 ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ) |
69 |
61 64
|
breqtrrdi |
⊢ ( 𝐾 ∈ ℕ → 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
70 |
|
elfzo1 |
⊢ ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ↔ ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
71 |
7 68 69 70
|
syl3anbrc |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
72 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
73 |
|
eqid |
⊢ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
74 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
75 |
72 73 2 74
|
gpgedgel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝐸 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝐸 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) ) ) |
76 |
51 71 75
|
syl2anc |
⊢ ( 𝐾 ∈ ℕ → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( 𝐸 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝐸 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝐸 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) ) ) |
77 |
33 76
|
mpbird |
⊢ ( 𝐾 ∈ ℕ → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |