| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpg3kgrtriex.n |
|- N = ( 3 x. K ) |
| 2 |
|
gpg3kgrtriex.g |
|- G = ( N gPetersenGr K ) |
| 3 |
|
gpg3kgrtriex.e |
|- E = { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } |
| 4 |
|
nnz |
|- ( K e. NN -> K e. ZZ ) |
| 5 |
|
3nn |
|- 3 e. NN |
| 6 |
5
|
a1i |
|- ( K e. NN -> 3 e. NN ) |
| 7 |
|
id |
|- ( K e. NN -> K e. NN ) |
| 8 |
6 7
|
nnmulcld |
|- ( K e. NN -> ( 3 x. K ) e. NN ) |
| 9 |
1 8
|
eqeltrid |
|- ( K e. NN -> N e. NN ) |
| 10 |
|
zmodfzo |
|- ( ( K e. ZZ /\ N e. NN ) -> ( K mod N ) e. ( 0 ..^ N ) ) |
| 11 |
4 9 10
|
syl2anc |
|- ( K e. NN -> ( K mod N ) e. ( 0 ..^ N ) ) |
| 12 |
|
opeq2 |
|- ( x = ( K mod N ) -> <. 0 , x >. = <. 0 , ( K mod N ) >. ) |
| 13 |
|
oveq1 |
|- ( x = ( K mod N ) -> ( x + 1 ) = ( ( K mod N ) + 1 ) ) |
| 14 |
13
|
oveq1d |
|- ( x = ( K mod N ) -> ( ( x + 1 ) mod N ) = ( ( ( K mod N ) + 1 ) mod N ) ) |
| 15 |
14
|
opeq2d |
|- ( x = ( K mod N ) -> <. 0 , ( ( x + 1 ) mod N ) >. = <. 0 , ( ( ( K mod N ) + 1 ) mod N ) >. ) |
| 16 |
12 15
|
preq12d |
|- ( x = ( K mod N ) -> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } = { <. 0 , ( K mod N ) >. , <. 0 , ( ( ( K mod N ) + 1 ) mod N ) >. } ) |
| 17 |
16
|
eqeq2d |
|- ( x = ( K mod N ) -> ( E = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> E = { <. 0 , ( K mod N ) >. , <. 0 , ( ( ( K mod N ) + 1 ) mod N ) >. } ) ) |
| 18 |
|
opeq2 |
|- ( x = ( K mod N ) -> <. 1 , x >. = <. 1 , ( K mod N ) >. ) |
| 19 |
12 18
|
preq12d |
|- ( x = ( K mod N ) -> { <. 0 , x >. , <. 1 , x >. } = { <. 0 , ( K mod N ) >. , <. 1 , ( K mod N ) >. } ) |
| 20 |
19
|
eqeq2d |
|- ( x = ( K mod N ) -> ( E = { <. 0 , x >. , <. 1 , x >. } <-> E = { <. 0 , ( K mod N ) >. , <. 1 , ( K mod N ) >. } ) ) |
| 21 |
|
oveq1 |
|- ( x = ( K mod N ) -> ( x + K ) = ( ( K mod N ) + K ) ) |
| 22 |
21
|
oveq1d |
|- ( x = ( K mod N ) -> ( ( x + K ) mod N ) = ( ( ( K mod N ) + K ) mod N ) ) |
| 23 |
22
|
opeq2d |
|- ( x = ( K mod N ) -> <. 1 , ( ( x + K ) mod N ) >. = <. 1 , ( ( ( K mod N ) + K ) mod N ) >. ) |
| 24 |
18 23
|
preq12d |
|- ( x = ( K mod N ) -> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } = { <. 1 , ( K mod N ) >. , <. 1 , ( ( ( K mod N ) + K ) mod N ) >. } ) |
| 25 |
24
|
eqeq2d |
|- ( x = ( K mod N ) -> ( E = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> E = { <. 1 , ( K mod N ) >. , <. 1 , ( ( ( K mod N ) + K ) mod N ) >. } ) ) |
| 26 |
17 20 25
|
3orbi123d |
|- ( x = ( K mod N ) -> ( ( E = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ E = { <. 0 , x >. , <. 1 , x >. } \/ E = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( E = { <. 0 , ( K mod N ) >. , <. 0 , ( ( ( K mod N ) + 1 ) mod N ) >. } \/ E = { <. 0 , ( K mod N ) >. , <. 1 , ( K mod N ) >. } \/ E = { <. 1 , ( K mod N ) >. , <. 1 , ( ( ( K mod N ) + K ) mod N ) >. } ) ) ) |
| 27 |
26
|
adantl |
|- ( ( K e. NN /\ x = ( K mod N ) ) -> ( ( E = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ E = { <. 0 , x >. , <. 1 , x >. } \/ E = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( E = { <. 0 , ( K mod N ) >. , <. 0 , ( ( ( K mod N ) + 1 ) mod N ) >. } \/ E = { <. 0 , ( K mod N ) >. , <. 1 , ( K mod N ) >. } \/ E = { <. 1 , ( K mod N ) >. , <. 1 , ( ( ( K mod N ) + K ) mod N ) >. } ) ) ) |
| 28 |
1
|
gpg3kgrtriexlem2 |
|- ( K e. NN -> ( -u K mod N ) = ( ( ( K mod N ) + K ) mod N ) ) |
| 29 |
28
|
opeq2d |
|- ( K e. NN -> <. 1 , ( -u K mod N ) >. = <. 1 , ( ( ( K mod N ) + K ) mod N ) >. ) |
| 30 |
29
|
preq2d |
|- ( K e. NN -> { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } = { <. 1 , ( K mod N ) >. , <. 1 , ( ( ( K mod N ) + K ) mod N ) >. } ) |
| 31 |
3 30
|
eqtrid |
|- ( K e. NN -> E = { <. 1 , ( K mod N ) >. , <. 1 , ( ( ( K mod N ) + K ) mod N ) >. } ) |
| 32 |
31
|
3mix3d |
|- ( K e. NN -> ( E = { <. 0 , ( K mod N ) >. , <. 0 , ( ( ( K mod N ) + 1 ) mod N ) >. } \/ E = { <. 0 , ( K mod N ) >. , <. 1 , ( K mod N ) >. } \/ E = { <. 1 , ( K mod N ) >. , <. 1 , ( ( ( K mod N ) + K ) mod N ) >. } ) ) |
| 33 |
11 27 32
|
rspcedvd |
|- ( K e. NN -> E. x e. ( 0 ..^ N ) ( E = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ E = { <. 0 , x >. , <. 1 , x >. } \/ E = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 34 |
|
3z |
|- 3 e. ZZ |
| 35 |
34
|
a1i |
|- ( K e. NN -> 3 e. ZZ ) |
| 36 |
35 4
|
zmulcld |
|- ( K e. NN -> ( 3 x. K ) e. ZZ ) |
| 37 |
|
3t1e3 |
|- ( 3 x. 1 ) = 3 |
| 38 |
|
nnge1 |
|- ( K e. NN -> 1 <_ K ) |
| 39 |
|
1red |
|- ( K e. NN -> 1 e. RR ) |
| 40 |
|
nnre |
|- ( K e. NN -> K e. RR ) |
| 41 |
|
3re |
|- 3 e. RR |
| 42 |
|
3pos |
|- 0 < 3 |
| 43 |
41 42
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
| 44 |
43
|
a1i |
|- ( K e. NN -> ( 3 e. RR /\ 0 < 3 ) ) |
| 45 |
|
lemul2 |
|- ( ( 1 e. RR /\ K e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( 1 <_ K <-> ( 3 x. 1 ) <_ ( 3 x. K ) ) ) |
| 46 |
39 40 44 45
|
syl3anc |
|- ( K e. NN -> ( 1 <_ K <-> ( 3 x. 1 ) <_ ( 3 x. K ) ) ) |
| 47 |
38 46
|
mpbid |
|- ( K e. NN -> ( 3 x. 1 ) <_ ( 3 x. K ) ) |
| 48 |
37 47
|
eqbrtrrid |
|- ( K e. NN -> 3 <_ ( 3 x. K ) ) |
| 49 |
|
eluz2 |
|- ( ( 3 x. K ) e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ ( 3 x. K ) e. ZZ /\ 3 <_ ( 3 x. K ) ) ) |
| 50 |
35 36 48 49
|
syl3anbrc |
|- ( K e. NN -> ( 3 x. K ) e. ( ZZ>= ` 3 ) ) |
| 51 |
1 50
|
eqeltrid |
|- ( K e. NN -> N e. ( ZZ>= ` 3 ) ) |
| 52 |
41
|
a1i |
|- ( K e. NN -> 3 e. RR ) |
| 53 |
52 40
|
remulcld |
|- ( K e. NN -> ( 3 x. K ) e. RR ) |
| 54 |
1 53
|
eqeltrid |
|- ( K e. NN -> N e. RR ) |
| 55 |
54
|
rehalfcld |
|- ( K e. NN -> ( N / 2 ) e. RR ) |
| 56 |
55
|
ceilcld |
|- ( K e. NN -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
| 57 |
56
|
zred |
|- ( K e. NN -> ( |^ ` ( N / 2 ) ) e. RR ) |
| 58 |
53
|
rehalfcld |
|- ( K e. NN -> ( ( 3 x. K ) / 2 ) e. RR ) |
| 59 |
58
|
ceilcld |
|- ( K e. NN -> ( |^ ` ( ( 3 x. K ) / 2 ) ) e. ZZ ) |
| 60 |
59
|
zred |
|- ( K e. NN -> ( |^ ` ( ( 3 x. K ) / 2 ) ) e. RR ) |
| 61 |
|
gpg3kgrtriexlem1 |
|- ( K e. NN -> K < ( |^ ` ( ( 3 x. K ) / 2 ) ) ) |
| 62 |
40 60 61
|
ltled |
|- ( K e. NN -> K <_ ( |^ ` ( ( 3 x. K ) / 2 ) ) ) |
| 63 |
1
|
oveq1i |
|- ( N / 2 ) = ( ( 3 x. K ) / 2 ) |
| 64 |
63
|
fveq2i |
|- ( |^ ` ( N / 2 ) ) = ( |^ ` ( ( 3 x. K ) / 2 ) ) |
| 65 |
62 64
|
breqtrrdi |
|- ( K e. NN -> K <_ ( |^ ` ( N / 2 ) ) ) |
| 66 |
39 40 57 38 65
|
letrd |
|- ( K e. NN -> 1 <_ ( |^ ` ( N / 2 ) ) ) |
| 67 |
|
elnnz1 |
|- ( ( |^ ` ( N / 2 ) ) e. NN <-> ( ( |^ ` ( N / 2 ) ) e. ZZ /\ 1 <_ ( |^ ` ( N / 2 ) ) ) ) |
| 68 |
56 66 67
|
sylanbrc |
|- ( K e. NN -> ( |^ ` ( N / 2 ) ) e. NN ) |
| 69 |
61 64
|
breqtrrdi |
|- ( K e. NN -> K < ( |^ ` ( N / 2 ) ) ) |
| 70 |
|
elfzo1 |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) <-> ( K e. NN /\ ( |^ ` ( N / 2 ) ) e. NN /\ K < ( |^ ` ( N / 2 ) ) ) ) |
| 71 |
7 68 69 70
|
syl3anbrc |
|- ( K e. NN -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 72 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
| 73 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 74 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 75 |
72 73 2 74
|
gpgedgel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( E e. ( Edg ` G ) <-> E. x e. ( 0 ..^ N ) ( E = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ E = { <. 0 , x >. , <. 1 , x >. } \/ E = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 76 |
51 71 75
|
syl2anc |
|- ( K e. NN -> ( E e. ( Edg ` G ) <-> E. x e. ( 0 ..^ N ) ( E = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ E = { <. 0 , x >. , <. 1 , x >. } \/ E = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 77 |
33 76
|
mpbird |
|- ( K e. NN -> E e. ( Edg ` G ) ) |