Step |
Hyp |
Ref |
Expression |
1 |
|
gpg3kgrtriex.n |
|- N = ( 3 x. K ) |
2 |
|
nnre |
|- ( K e. NN -> K e. RR ) |
3 |
|
3rp |
|- 3 e. RR+ |
4 |
3
|
a1i |
|- ( K e. NN -> 3 e. RR+ ) |
5 |
|
nnrp |
|- ( K e. NN -> K e. RR+ ) |
6 |
4 5
|
rpmulcld |
|- ( K e. NN -> ( 3 x. K ) e. RR+ ) |
7 |
1 6
|
eqeltrid |
|- ( K e. NN -> N e. RR+ ) |
8 |
|
modaddmod |
|- ( ( K e. RR /\ K e. RR /\ N e. RR+ ) -> ( ( ( K mod N ) + K ) mod N ) = ( ( K + K ) mod N ) ) |
9 |
2 2 7 8
|
syl3anc |
|- ( K e. NN -> ( ( ( K mod N ) + K ) mod N ) = ( ( K + K ) mod N ) ) |
10 |
|
nncn |
|- ( K e. NN -> K e. CC ) |
11 |
10
|
2timesd |
|- ( K e. NN -> ( 2 x. K ) = ( K + K ) ) |
12 |
11
|
eqcomd |
|- ( K e. NN -> ( K + K ) = ( 2 x. K ) ) |
13 |
12
|
oveq1d |
|- ( K e. NN -> ( ( K + K ) mod N ) = ( ( 2 x. K ) mod N ) ) |
14 |
|
2cnd |
|- ( K e. NN -> 2 e. CC ) |
15 |
14 10
|
adddirp1d |
|- ( K e. NN -> ( ( 2 + 1 ) x. K ) = ( ( 2 x. K ) + K ) ) |
16 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
17 |
16
|
oveq1i |
|- ( ( 2 + 1 ) x. K ) = ( 3 x. K ) |
18 |
15 17
|
eqtr3di |
|- ( K e. NN -> ( ( 2 x. K ) + K ) = ( 3 x. K ) ) |
19 |
18
|
oveq1d |
|- ( K e. NN -> ( ( ( 2 x. K ) + K ) mod N ) = ( ( 3 x. K ) mod N ) ) |
20 |
1
|
a1i |
|- ( K e. NN -> N = ( 3 x. K ) ) |
21 |
20
|
oveq2d |
|- ( K e. NN -> ( ( 3 x. K ) mod N ) = ( ( 3 x. K ) mod ( 3 x. K ) ) ) |
22 |
|
modid0 |
|- ( ( 3 x. K ) e. RR+ -> ( ( 3 x. K ) mod ( 3 x. K ) ) = 0 ) |
23 |
6 22
|
syl |
|- ( K e. NN -> ( ( 3 x. K ) mod ( 3 x. K ) ) = 0 ) |
24 |
19 21 23
|
3eqtrd |
|- ( K e. NN -> ( ( ( 2 x. K ) + K ) mod N ) = 0 ) |
25 |
|
2nn |
|- 2 e. NN |
26 |
25
|
a1i |
|- ( K e. NN -> 2 e. NN ) |
27 |
|
id |
|- ( K e. NN -> K e. NN ) |
28 |
26 27
|
nnmulcld |
|- ( K e. NN -> ( 2 x. K ) e. NN ) |
29 |
28
|
nnzd |
|- ( K e. NN -> ( 2 x. K ) e. ZZ ) |
30 |
|
nnz |
|- ( K e. NN -> K e. ZZ ) |
31 |
|
3nn |
|- 3 e. NN |
32 |
31
|
a1i |
|- ( K e. NN -> 3 e. NN ) |
33 |
32 27
|
nnmulcld |
|- ( K e. NN -> ( 3 x. K ) e. NN ) |
34 |
1 33
|
eqeltrid |
|- ( K e. NN -> N e. NN ) |
35 |
|
summodnegmod |
|- ( ( ( 2 x. K ) e. ZZ /\ K e. ZZ /\ N e. NN ) -> ( ( ( ( 2 x. K ) + K ) mod N ) = 0 <-> ( ( 2 x. K ) mod N ) = ( -u K mod N ) ) ) |
36 |
29 30 34 35
|
syl3anc |
|- ( K e. NN -> ( ( ( ( 2 x. K ) + K ) mod N ) = 0 <-> ( ( 2 x. K ) mod N ) = ( -u K mod N ) ) ) |
37 |
24 36
|
mpbid |
|- ( K e. NN -> ( ( 2 x. K ) mod N ) = ( -u K mod N ) ) |
38 |
9 13 37
|
3eqtrrd |
|- ( K e. NN -> ( -u K mod N ) = ( ( ( K mod N ) + K ) mod N ) ) |