Step |
Hyp |
Ref |
Expression |
1 |
|
gpg3kgrtriex.n |
|- N = ( 3 x. K ) |
2 |
|
3z |
|- 3 e. ZZ |
3 |
2
|
a1i |
|- ( K e. NN -> 3 e. ZZ ) |
4 |
|
nnz |
|- ( K e. NN -> K e. ZZ ) |
5 |
3 4
|
zmulcld |
|- ( K e. NN -> ( 3 x. K ) e. ZZ ) |
6 |
|
3t1e3 |
|- ( 3 x. 1 ) = 3 |
7 |
|
nnge1 |
|- ( K e. NN -> 1 <_ K ) |
8 |
|
1re |
|- 1 e. RR |
9 |
|
nnre |
|- ( K e. NN -> K e. RR ) |
10 |
|
3re |
|- 3 e. RR |
11 |
|
3pos |
|- 0 < 3 |
12 |
10 11
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
13 |
12
|
a1i |
|- ( K e. NN -> ( 3 e. RR /\ 0 < 3 ) ) |
14 |
|
lemul2 |
|- ( ( 1 e. RR /\ K e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( 1 <_ K <-> ( 3 x. 1 ) <_ ( 3 x. K ) ) ) |
15 |
8 9 13 14
|
mp3an2i |
|- ( K e. NN -> ( 1 <_ K <-> ( 3 x. 1 ) <_ ( 3 x. K ) ) ) |
16 |
7 15
|
mpbid |
|- ( K e. NN -> ( 3 x. 1 ) <_ ( 3 x. K ) ) |
17 |
6 16
|
eqbrtrrid |
|- ( K e. NN -> 3 <_ ( 3 x. K ) ) |
18 |
|
eluz2 |
|- ( ( 3 x. K ) e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ ( 3 x. K ) e. ZZ /\ 3 <_ ( 3 x. K ) ) ) |
19 |
3 5 17 18
|
syl3anbrc |
|- ( K e. NN -> ( 3 x. K ) e. ( ZZ>= ` 3 ) ) |
20 |
1 19
|
eqeltrid |
|- ( K e. NN -> N e. ( ZZ>= ` 3 ) ) |