Step |
Hyp |
Ref |
Expression |
1 |
|
gpg3kgrtriex.n |
|- N = ( 3 x. K ) |
2 |
|
gpg3kgrtriex.g |
|- G = ( N gPetersenGr K ) |
3 |
|
1ex |
|- 1 e. _V |
4 |
3
|
prid2 |
|- 1 e. { 0 , 1 } |
5 |
4
|
a1i |
|- ( K e. NN -> 1 e. { 0 , 1 } ) |
6 |
|
3nn |
|- 3 e. NN |
7 |
6
|
a1i |
|- ( K e. NN -> 3 e. NN ) |
8 |
|
id |
|- ( K e. NN -> K e. NN ) |
9 |
7 8
|
nnmulcld |
|- ( K e. NN -> ( 3 x. K ) e. NN ) |
10 |
1 9
|
eqeltrid |
|- ( K e. NN -> N e. NN ) |
11 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
12 |
10 11
|
sylibr |
|- ( K e. NN -> 0 e. ( 0 ..^ N ) ) |
13 |
5 12
|
opelxpd |
|- ( K e. NN -> <. 1 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
14 |
1
|
gpg3kgrtriexlem4 |
|- ( K e. NN -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
15 |
10 14
|
jca |
|- ( K e. NN -> ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
16 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
17 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
18 |
16 17
|
gpgvtx |
|- ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
19 |
18
|
eleq2d |
|- ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( <. 1 , 0 >. e. ( Vtx ` ( N gPetersenGr K ) ) <-> <. 1 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
20 |
15 19
|
syl |
|- ( K e. NN -> ( <. 1 , 0 >. e. ( Vtx ` ( N gPetersenGr K ) ) <-> <. 1 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
21 |
13 20
|
mpbird |
|- ( K e. NN -> <. 1 , 0 >. e. ( Vtx ` ( N gPetersenGr K ) ) ) |
22 |
2
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) |
23 |
21 22
|
eleqtrrdi |
|- ( K e. NN -> <. 1 , 0 >. e. ( Vtx ` G ) ) |
24 |
|
oveq2 |
|- ( a = <. 1 , 0 >. -> ( G NeighbVtx a ) = ( G NeighbVtx <. 1 , 0 >. ) ) |
25 |
|
biidd |
|- ( a = <. 1 , 0 >. -> ( ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
26 |
24 25
|
rexeqbidv |
|- ( a = <. 1 , 0 >. -> ( E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
27 |
24 26
|
rexeqbidv |
|- ( a = <. 1 , 0 >. -> ( E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> E. b e. ( G NeighbVtx <. 1 , 0 >. ) E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
28 |
27
|
adantl |
|- ( ( K e. NN /\ a = <. 1 , 0 >. ) -> ( E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> E. b e. ( G NeighbVtx <. 1 , 0 >. ) E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
29 |
1
|
gpg3kgrtriexlem3 |
|- ( K e. NN -> N e. ( ZZ>= ` 3 ) ) |
30 |
|
eqid |
|- 1 = 1 |
31 |
30
|
a1i |
|- ( K e. NN -> 1 = 1 ) |
32 |
31
|
olcd |
|- ( K e. NN -> ( 1 = 0 \/ 1 = 1 ) ) |
33 |
32 12
|
jca |
|- ( K e. NN -> ( ( 1 = 0 \/ 1 = 1 ) /\ 0 e. ( 0 ..^ N ) ) ) |
34 |
29 14
|
jca |
|- ( K e. NN -> ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
35 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
36 |
17 16 2 35
|
opgpgvtx |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( <. 1 , 0 >. e. ( Vtx ` G ) <-> ( ( 1 = 0 \/ 1 = 1 ) /\ 0 e. ( 0 ..^ N ) ) ) ) |
37 |
34 36
|
syl |
|- ( K e. NN -> ( <. 1 , 0 >. e. ( Vtx ` G ) <-> ( ( 1 = 0 \/ 1 = 1 ) /\ 0 e. ( 0 ..^ N ) ) ) ) |
38 |
33 37
|
mpbird |
|- ( K e. NN -> <. 1 , 0 >. e. ( Vtx ` G ) ) |
39 |
|
c0ex |
|- 0 e. _V |
40 |
3 39
|
op1st |
|- ( 1st ` <. 1 , 0 >. ) = 1 |
41 |
40
|
a1i |
|- ( K e. NN -> ( 1st ` <. 1 , 0 >. ) = 1 ) |
42 |
|
eqid |
|- ( G NeighbVtx <. 1 , 0 >. ) = ( G NeighbVtx <. 1 , 0 >. ) |
43 |
16 2 35 42
|
gpgnbgrvtx1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) /\ ( <. 1 , 0 >. e. ( Vtx ` G ) /\ ( 1st ` <. 1 , 0 >. ) = 1 ) ) -> ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) |
44 |
29 14 38 41 43
|
syl22anc |
|- ( K e. NN -> ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) |
45 |
|
neeq1 |
|- ( b = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. -> ( b =/= c <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= c ) ) |
46 |
|
preq1 |
|- ( b = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. -> { b , c } = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } ) |
47 |
46
|
eleq1d |
|- ( b = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. -> ( { b , c } e. ( Edg ` G ) <-> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } e. ( Edg ` G ) ) ) |
48 |
45 47
|
anbi12d |
|- ( b = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. -> ( ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= c /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } e. ( Edg ` G ) ) ) ) |
49 |
|
neeq2 |
|- ( c = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= c <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. ) ) |
50 |
|
preq2 |
|- ( c = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) |
51 |
50
|
eleq1d |
|- ( c = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } e. ( Edg ` G ) <-> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) ) |
52 |
49 51
|
anbi12d |
|- ( c = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. -> ( ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= c /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } e. ( Edg ` G ) ) <-> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) ) ) |
53 |
|
opex |
|- <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. _V |
54 |
53
|
tpid1 |
|- <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } |
55 |
|
eleq2 |
|- ( ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) ) |
56 |
55
|
adantl |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) ) |
57 |
54 56
|
mpbiri |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) ) |
58 |
|
opex |
|- <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. _V |
59 |
58
|
tpid3 |
|- <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } |
60 |
|
eleq2 |
|- ( ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) ) |
61 |
60
|
adantl |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) ) |
62 |
59 61
|
mpbiri |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) ) |
63 |
1
|
gpg3kgrtriexlem5 |
|- ( K e. NN -> ( K mod N ) =/= ( -u K mod N ) ) |
64 |
3 39
|
op2nd |
|- ( 2nd ` <. 1 , 0 >. ) = 0 |
65 |
64
|
oveq1i |
|- ( ( 2nd ` <. 1 , 0 >. ) + K ) = ( 0 + K ) |
66 |
|
nncn |
|- ( K e. NN -> K e. CC ) |
67 |
66
|
addlidd |
|- ( K e. NN -> ( 0 + K ) = K ) |
68 |
65 67
|
eqtrid |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) + K ) = K ) |
69 |
68
|
oveq1d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) = ( K mod N ) ) |
70 |
64
|
oveq1i |
|- ( ( 2nd ` <. 1 , 0 >. ) - K ) = ( 0 - K ) |
71 |
70
|
a1i |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) - K ) = ( 0 - K ) ) |
72 |
|
df-neg |
|- -u K = ( 0 - K ) |
73 |
71 72
|
eqtr4di |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) - K ) = -u K ) |
74 |
73
|
oveq1d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) = ( -u K mod N ) ) |
75 |
63 69 74
|
3netr4d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) =/= ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) ) |
76 |
75
|
olcd |
|- ( K e. NN -> ( 1 =/= 1 \/ ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) =/= ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) ) ) |
77 |
|
ovex |
|- ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) e. _V |
78 |
3 77
|
opthne |
|- ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. <-> ( 1 =/= 1 \/ ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) =/= ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) ) ) |
79 |
76 78
|
sylibr |
|- ( K e. NN -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. ) |
80 |
64
|
a1i |
|- ( K e. NN -> ( 2nd ` <. 1 , 0 >. ) = 0 ) |
81 |
80
|
oveq1d |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) + K ) = ( 0 + K ) ) |
82 |
81 67
|
eqtrd |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) + K ) = K ) |
83 |
82
|
oveq1d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) = ( K mod N ) ) |
84 |
83
|
opeq2d |
|- ( K e. NN -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. = <. 1 , ( K mod N ) >. ) |
85 |
80
|
oveq1d |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) - K ) = ( 0 - K ) ) |
86 |
85 72
|
eqtr4di |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) - K ) = -u K ) |
87 |
86
|
oveq1d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) = ( -u K mod N ) ) |
88 |
87
|
opeq2d |
|- ( K e. NN -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. = <. 1 , ( -u K mod N ) >. ) |
89 |
84 88
|
preq12d |
|- ( K e. NN -> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } = { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } ) |
90 |
|
eqid |
|- { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } = { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } |
91 |
1 2 90
|
gpg3kgrtriexlem6 |
|- ( K e. NN -> { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } e. ( Edg ` G ) ) |
92 |
89 91
|
eqeltrd |
|- ( K e. NN -> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) |
93 |
79 92
|
jca |
|- ( K e. NN -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) ) |
94 |
93
|
adantr |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) ) |
95 |
48 52 57 62 94
|
2rspcedvdw |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> E. b e. ( G NeighbVtx <. 1 , 0 >. ) E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) |
96 |
44 95
|
mpdan |
|- ( K e. NN -> E. b e. ( G NeighbVtx <. 1 , 0 >. ) E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) |
97 |
23 28 96
|
rspcedvd |
|- ( K e. NN -> E. a e. ( Vtx ` G ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) |
98 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |
99 |
2 98
|
eqeltrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> G e. USGraph ) |
100 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
101 |
|
eqid |
|- ( G NeighbVtx a ) = ( G NeighbVtx a ) |
102 |
35 100 101
|
usgrgrtrirex |
|- ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( Vtx ` G ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
103 |
34 99 102
|
3syl |
|- ( K e. NN -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( Vtx ` G ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
104 |
97 103
|
mpbird |
|- ( K e. NN -> E. t t e. ( GrTriangles ` G ) ) |