| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpg3kgrtriex.n |
|- N = ( 3 x. K ) |
| 2 |
|
gpg3kgrtriex.g |
|- G = ( N gPetersenGr K ) |
| 3 |
|
1ex |
|- 1 e. _V |
| 4 |
3
|
prid2 |
|- 1 e. { 0 , 1 } |
| 5 |
4
|
a1i |
|- ( K e. NN -> 1 e. { 0 , 1 } ) |
| 6 |
|
3nn |
|- 3 e. NN |
| 7 |
6
|
a1i |
|- ( K e. NN -> 3 e. NN ) |
| 8 |
|
id |
|- ( K e. NN -> K e. NN ) |
| 9 |
7 8
|
nnmulcld |
|- ( K e. NN -> ( 3 x. K ) e. NN ) |
| 10 |
1 9
|
eqeltrid |
|- ( K e. NN -> N e. NN ) |
| 11 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
| 12 |
10 11
|
sylibr |
|- ( K e. NN -> 0 e. ( 0 ..^ N ) ) |
| 13 |
5 12
|
opelxpd |
|- ( K e. NN -> <. 1 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 14 |
1
|
gpg3kgrtriexlem4 |
|- ( K e. NN -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 15 |
10 14
|
jca |
|- ( K e. NN -> ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
| 16 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 17 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
| 18 |
16 17
|
gpgvtx |
|- ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
| 19 |
18
|
eleq2d |
|- ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( <. 1 , 0 >. e. ( Vtx ` ( N gPetersenGr K ) ) <-> <. 1 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
| 20 |
15 19
|
syl |
|- ( K e. NN -> ( <. 1 , 0 >. e. ( Vtx ` ( N gPetersenGr K ) ) <-> <. 1 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ N ) ) ) ) |
| 21 |
13 20
|
mpbird |
|- ( K e. NN -> <. 1 , 0 >. e. ( Vtx ` ( N gPetersenGr K ) ) ) |
| 22 |
2
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) |
| 23 |
21 22
|
eleqtrrdi |
|- ( K e. NN -> <. 1 , 0 >. e. ( Vtx ` G ) ) |
| 24 |
|
oveq2 |
|- ( a = <. 1 , 0 >. -> ( G NeighbVtx a ) = ( G NeighbVtx <. 1 , 0 >. ) ) |
| 25 |
|
biidd |
|- ( a = <. 1 , 0 >. -> ( ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 26 |
24 25
|
rexeqbidv |
|- ( a = <. 1 , 0 >. -> ( E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 27 |
24 26
|
rexeqbidv |
|- ( a = <. 1 , 0 >. -> ( E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> E. b e. ( G NeighbVtx <. 1 , 0 >. ) E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 28 |
27
|
adantl |
|- ( ( K e. NN /\ a = <. 1 , 0 >. ) -> ( E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> E. b e. ( G NeighbVtx <. 1 , 0 >. ) E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 29 |
1
|
gpg3kgrtriexlem3 |
|- ( K e. NN -> N e. ( ZZ>= ` 3 ) ) |
| 30 |
|
eqid |
|- 1 = 1 |
| 31 |
30
|
a1i |
|- ( K e. NN -> 1 = 1 ) |
| 32 |
31
|
olcd |
|- ( K e. NN -> ( 1 = 0 \/ 1 = 1 ) ) |
| 33 |
32 12
|
jca |
|- ( K e. NN -> ( ( 1 = 0 \/ 1 = 1 ) /\ 0 e. ( 0 ..^ N ) ) ) |
| 34 |
29 14
|
jca |
|- ( K e. NN -> ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) ) |
| 35 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 36 |
17 16 2 35
|
opgpgvtx |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( <. 1 , 0 >. e. ( Vtx ` G ) <-> ( ( 1 = 0 \/ 1 = 1 ) /\ 0 e. ( 0 ..^ N ) ) ) ) |
| 37 |
34 36
|
syl |
|- ( K e. NN -> ( <. 1 , 0 >. e. ( Vtx ` G ) <-> ( ( 1 = 0 \/ 1 = 1 ) /\ 0 e. ( 0 ..^ N ) ) ) ) |
| 38 |
33 37
|
mpbird |
|- ( K e. NN -> <. 1 , 0 >. e. ( Vtx ` G ) ) |
| 39 |
|
c0ex |
|- 0 e. _V |
| 40 |
3 39
|
op1st |
|- ( 1st ` <. 1 , 0 >. ) = 1 |
| 41 |
40
|
a1i |
|- ( K e. NN -> ( 1st ` <. 1 , 0 >. ) = 1 ) |
| 42 |
|
eqid |
|- ( G NeighbVtx <. 1 , 0 >. ) = ( G NeighbVtx <. 1 , 0 >. ) |
| 43 |
16 2 35 42
|
gpgnbgrvtx1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) /\ ( <. 1 , 0 >. e. ( Vtx ` G ) /\ ( 1st ` <. 1 , 0 >. ) = 1 ) ) -> ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) |
| 44 |
29 14 38 41 43
|
syl22anc |
|- ( K e. NN -> ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) |
| 45 |
|
neeq1 |
|- ( b = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. -> ( b =/= c <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= c ) ) |
| 46 |
|
preq1 |
|- ( b = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. -> { b , c } = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } ) |
| 47 |
46
|
eleq1d |
|- ( b = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. -> ( { b , c } e. ( Edg ` G ) <-> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } e. ( Edg ` G ) ) ) |
| 48 |
45 47
|
anbi12d |
|- ( b = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. -> ( ( b =/= c /\ { b , c } e. ( Edg ` G ) ) <-> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= c /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } e. ( Edg ` G ) ) ) ) |
| 49 |
|
neeq2 |
|- ( c = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= c <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. ) ) |
| 50 |
|
preq2 |
|- ( c = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) |
| 51 |
50
|
eleq1d |
|- ( c = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } e. ( Edg ` G ) <-> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) ) |
| 52 |
49 51
|
anbi12d |
|- ( c = <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. -> ( ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= c /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , c } e. ( Edg ` G ) ) <-> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) ) ) |
| 53 |
|
opex |
|- <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. _V |
| 54 |
53
|
tpid1 |
|- <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } |
| 55 |
|
eleq2 |
|- ( ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) ) |
| 56 |
55
|
adantl |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) ) |
| 57 |
54 56
|
mpbiri |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) ) |
| 58 |
|
opex |
|- <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. _V |
| 59 |
58
|
tpid3 |
|- <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } |
| 60 |
|
eleq2 |
|- ( ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) ) |
| 61 |
60
|
adantl |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) <-> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) ) |
| 62 |
59 61
|
mpbiri |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. e. ( G NeighbVtx <. 1 , 0 >. ) ) |
| 63 |
1
|
gpg3kgrtriexlem5 |
|- ( K e. NN -> ( K mod N ) =/= ( -u K mod N ) ) |
| 64 |
3 39
|
op2nd |
|- ( 2nd ` <. 1 , 0 >. ) = 0 |
| 65 |
64
|
oveq1i |
|- ( ( 2nd ` <. 1 , 0 >. ) + K ) = ( 0 + K ) |
| 66 |
|
nncn |
|- ( K e. NN -> K e. CC ) |
| 67 |
66
|
addlidd |
|- ( K e. NN -> ( 0 + K ) = K ) |
| 68 |
65 67
|
eqtrid |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) + K ) = K ) |
| 69 |
68
|
oveq1d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) = ( K mod N ) ) |
| 70 |
64
|
oveq1i |
|- ( ( 2nd ` <. 1 , 0 >. ) - K ) = ( 0 - K ) |
| 71 |
70
|
a1i |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) - K ) = ( 0 - K ) ) |
| 72 |
|
df-neg |
|- -u K = ( 0 - K ) |
| 73 |
71 72
|
eqtr4di |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) - K ) = -u K ) |
| 74 |
73
|
oveq1d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) = ( -u K mod N ) ) |
| 75 |
63 69 74
|
3netr4d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) =/= ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) ) |
| 76 |
75
|
olcd |
|- ( K e. NN -> ( 1 =/= 1 \/ ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) =/= ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) ) ) |
| 77 |
|
ovex |
|- ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) e. _V |
| 78 |
3 77
|
opthne |
|- ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. <-> ( 1 =/= 1 \/ ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) =/= ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) ) ) |
| 79 |
76 78
|
sylibr |
|- ( K e. NN -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. ) |
| 80 |
64
|
a1i |
|- ( K e. NN -> ( 2nd ` <. 1 , 0 >. ) = 0 ) |
| 81 |
80
|
oveq1d |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) + K ) = ( 0 + K ) ) |
| 82 |
81 67
|
eqtrd |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) + K ) = K ) |
| 83 |
82
|
oveq1d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) = ( K mod N ) ) |
| 84 |
83
|
opeq2d |
|- ( K e. NN -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. = <. 1 , ( K mod N ) >. ) |
| 85 |
80
|
oveq1d |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) - K ) = ( 0 - K ) ) |
| 86 |
85 72
|
eqtr4di |
|- ( K e. NN -> ( ( 2nd ` <. 1 , 0 >. ) - K ) = -u K ) |
| 87 |
86
|
oveq1d |
|- ( K e. NN -> ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) = ( -u K mod N ) ) |
| 88 |
87
|
opeq2d |
|- ( K e. NN -> <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. = <. 1 , ( -u K mod N ) >. ) |
| 89 |
84 88
|
preq12d |
|- ( K e. NN -> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } = { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } ) |
| 90 |
|
eqid |
|- { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } = { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } |
| 91 |
1 2 90
|
gpg3kgrtriexlem6 |
|- ( K e. NN -> { <. 1 , ( K mod N ) >. , <. 1 , ( -u K mod N ) >. } e. ( Edg ` G ) ) |
| 92 |
89 91
|
eqeltrd |
|- ( K e. NN -> { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) |
| 93 |
79 92
|
jca |
|- ( K e. NN -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) ) |
| 94 |
93
|
adantr |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> ( <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. /\ { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } e. ( Edg ` G ) ) ) |
| 95 |
48 52 57 62 94
|
2rspcedvdw |
|- ( ( K e. NN /\ ( G NeighbVtx <. 1 , 0 >. ) = { <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) + K ) mod N ) >. , <. 0 , ( 2nd ` <. 1 , 0 >. ) >. , <. 1 , ( ( ( 2nd ` <. 1 , 0 >. ) - K ) mod N ) >. } ) -> E. b e. ( G NeighbVtx <. 1 , 0 >. ) E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) |
| 96 |
44 95
|
mpdan |
|- ( K e. NN -> E. b e. ( G NeighbVtx <. 1 , 0 >. ) E. c e. ( G NeighbVtx <. 1 , 0 >. ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) |
| 97 |
23 28 96
|
rspcedvd |
|- ( K e. NN -> E. a e. ( Vtx ` G ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) |
| 98 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |
| 99 |
2 98
|
eqeltrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> G e. USGraph ) |
| 100 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 101 |
|
eqid |
|- ( G NeighbVtx a ) = ( G NeighbVtx a ) |
| 102 |
35 100 101
|
usgrgrtrirex |
|- ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( Vtx ` G ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 103 |
34 99 102
|
3syl |
|- ( K e. NN -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. ( Vtx ` G ) E. b e. ( G NeighbVtx a ) E. c e. ( G NeighbVtx a ) ( b =/= c /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 104 |
97 103
|
mpbird |
|- ( K e. NN -> E. t t e. ( GrTriangles ` G ) ) |