Metamath Proof Explorer


Theorem gpg5gricstgr3

Description: Each closed neighborhood in a generalized Petersen graph G(N,K) of order 10 ( N = 5 ), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is isomorphic to a 3-star. (Contributed by AV, 13-Sep-2025)

Ref Expression
Hypothesis gpg5gricstgr3.g
|- G = ( 5 gPetersenGr K )
Assertion gpg5gricstgr3
|- ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx V ) ) ~=gr ( StarGr ` 3 ) )

Proof

Step Hyp Ref Expression
1 gpg5gricstgr3.g
 |-  G = ( 5 gPetersenGr K )
2 5eluz3
 |-  5 e. ( ZZ>= ` 3 )
3 2z
 |-  2 e. ZZ
4 fzval3
 |-  ( 2 e. ZZ -> ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) )
5 3 4 ax-mp
 |-  ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) )
6 2p1e3
 |-  ( 2 + 1 ) = 3
7 6 oveq2i
 |-  ( 1 ..^ ( 2 + 1 ) ) = ( 1 ..^ 3 )
8 ceil5half3
 |-  ( |^ ` ( 5 / 2 ) ) = 3
9 8 eqcomi
 |-  3 = ( |^ ` ( 5 / 2 ) )
10 9 oveq2i
 |-  ( 1 ..^ 3 ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) )
11 5 7 10 3eqtri
 |-  ( 1 ... 2 ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) )
12 11 eleq2i
 |-  ( K e. ( 1 ... 2 ) <-> K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) )
13 12 biimpi
 |-  ( K e. ( 1 ... 2 ) -> K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) )
14 gpgusgra
 |-  ( ( 5 e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr K ) e. USGraph )
15 1 14 eqeltrid
 |-  ( ( 5 e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> G e. USGraph )
16 2 13 15 sylancr
 |-  ( K e. ( 1 ... 2 ) -> G e. USGraph )
17 16 anim1i
 |-  ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> ( G e. USGraph /\ V e. ( Vtx ` G ) ) )
18 eqidd
 |-  ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> 5 = 5 )
19 13 adantr
 |-  ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) )
20 simpr
 |-  ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> V e. ( Vtx ` G ) )
21 eqid
 |-  ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) )
22 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
23 eqid
 |-  ( G NeighbVtx V ) = ( G NeighbVtx V )
24 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
25 21 1 22 23 24 gpg5nbgr3star
 |-  ( ( 5 = 5 /\ K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) /\ V e. ( Vtx ` G ) ) -> ( ( # ` ( G NeighbVtx V ) ) = 3 /\ A. x e. ( G NeighbVtx V ) A. y e. ( G NeighbVtx V ) { x , y } e/ ( Edg ` G ) ) )
26 18 19 20 25 syl3anc
 |-  ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> ( ( # ` ( G NeighbVtx V ) ) = 3 /\ A. x e. ( G NeighbVtx V ) A. y e. ( G NeighbVtx V ) { x , y } e/ ( Edg ` G ) ) )
27 eqid
 |-  ( G ClNeighbVtx V ) = ( G ClNeighbVtx V )
28 3nn0
 |-  3 e. NN0
29 eqid
 |-  ( StarGr ` 3 ) = ( StarGr ` 3 )
30 eqid
 |-  ( Vtx ` ( StarGr ` 3 ) ) = ( Vtx ` ( StarGr ` 3 ) )
31 22 23 27 28 29 30 24 isubgr3stgr
 |-  ( ( G e. USGraph /\ V e. ( Vtx ` G ) ) -> ( ( ( # ` ( G NeighbVtx V ) ) = 3 /\ A. x e. ( G NeighbVtx V ) A. y e. ( G NeighbVtx V ) { x , y } e/ ( Edg ` G ) ) -> ( G ISubGr ( G ClNeighbVtx V ) ) ~=gr ( StarGr ` 3 ) ) )
32 17 26 31 sylc
 |-  ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx V ) ) ~=gr ( StarGr ` 3 ) )