Step |
Hyp |
Ref |
Expression |
1 |
|
gpg5gricstgr3.g |
|- G = ( 5 gPetersenGr K ) |
2 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
3 |
|
2z |
|- 2 e. ZZ |
4 |
|
fzval3 |
|- ( 2 e. ZZ -> ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) ) |
5 |
3 4
|
ax-mp |
|- ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) |
6 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
7 |
6
|
oveq2i |
|- ( 1 ..^ ( 2 + 1 ) ) = ( 1 ..^ 3 ) |
8 |
|
ceil5half3 |
|- ( |^ ` ( 5 / 2 ) ) = 3 |
9 |
8
|
eqcomi |
|- 3 = ( |^ ` ( 5 / 2 ) ) |
10 |
9
|
oveq2i |
|- ( 1 ..^ 3 ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
11 |
5 7 10
|
3eqtri |
|- ( 1 ... 2 ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
12 |
11
|
eleq2i |
|- ( K e. ( 1 ... 2 ) <-> K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
13 |
12
|
biimpi |
|- ( K e. ( 1 ... 2 ) -> K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
14 |
|
gpgusgra |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr K ) e. USGraph ) |
15 |
1 14
|
eqeltrid |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> G e. USGraph ) |
16 |
2 13 15
|
sylancr |
|- ( K e. ( 1 ... 2 ) -> G e. USGraph ) |
17 |
16
|
anim1i |
|- ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> ( G e. USGraph /\ V e. ( Vtx ` G ) ) ) |
18 |
|
eqidd |
|- ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> 5 = 5 ) |
19 |
13
|
adantr |
|- ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
20 |
|
simpr |
|- ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> V e. ( Vtx ` G ) ) |
21 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
22 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
23 |
|
eqid |
|- ( G NeighbVtx V ) = ( G NeighbVtx V ) |
24 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
25 |
21 1 22 23 24
|
gpg5nbgr3star |
|- ( ( 5 = 5 /\ K e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) /\ V e. ( Vtx ` G ) ) -> ( ( # ` ( G NeighbVtx V ) ) = 3 /\ A. x e. ( G NeighbVtx V ) A. y e. ( G NeighbVtx V ) { x , y } e/ ( Edg ` G ) ) ) |
26 |
18 19 20 25
|
syl3anc |
|- ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> ( ( # ` ( G NeighbVtx V ) ) = 3 /\ A. x e. ( G NeighbVtx V ) A. y e. ( G NeighbVtx V ) { x , y } e/ ( Edg ` G ) ) ) |
27 |
|
eqid |
|- ( G ClNeighbVtx V ) = ( G ClNeighbVtx V ) |
28 |
|
3nn0 |
|- 3 e. NN0 |
29 |
|
eqid |
|- ( StarGr ` 3 ) = ( StarGr ` 3 ) |
30 |
|
eqid |
|- ( Vtx ` ( StarGr ` 3 ) ) = ( Vtx ` ( StarGr ` 3 ) ) |
31 |
22 23 27 28 29 30 24
|
isubgr3stgr |
|- ( ( G e. USGraph /\ V e. ( Vtx ` G ) ) -> ( ( ( # ` ( G NeighbVtx V ) ) = 3 /\ A. x e. ( G NeighbVtx V ) A. y e. ( G NeighbVtx V ) { x , y } e/ ( Edg ` G ) ) -> ( G ISubGr ( G ClNeighbVtx V ) ) ~=gr ( StarGr ` 3 ) ) ) |
32 |
17 26 31
|
sylc |
|- ( ( K e. ( 1 ... 2 ) /\ V e. ( Vtx ` G ) ) -> ( G ISubGr ( G ClNeighbVtx V ) ) ~=gr ( StarGr ` 3 ) ) |