Metamath Proof Explorer


Theorem gpg5nbgr3star

Description: In a generalized Petersen graph G(N,K) of order 10 ( N = 5 ), these are the Petersen graph G(5,2) and the 5-prism G(5,1), every vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex induces a subgraph which is isomorphic to a 3-star). This does not hold for every generalized Petersen graph: for example, in the 3-prism G(3,1) (see gpg31grim3prism TODO) and the Dürer graph G(6,2) there are vertices which have neighborhoods containing triangles. In general, all generalized Peterson graphs G(N,K) with N = 3 x. K contain triangles. (Contributed by AV, 8-Sep-2025)

Ref Expression
Hypotheses gpgnbgr.j
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
gpgnbgr.g
|- G = ( N gPetersenGr K )
gpgnbgr.v
|- V = ( Vtx ` G )
gpgnbgr.u
|- U = ( G NeighbVtx X )
gpgnbgr.e
|- E = ( Edg ` G )
Assertion gpg5nbgr3star
|- ( ( N = 5 /\ K e. J /\ X e. V ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) )

Proof

Step Hyp Ref Expression
1 gpgnbgr.j
 |-  J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
2 gpgnbgr.g
 |-  G = ( N gPetersenGr K )
3 gpgnbgr.v
 |-  V = ( Vtx ` G )
4 gpgnbgr.u
 |-  U = ( G NeighbVtx X )
5 gpgnbgr.e
 |-  E = ( Edg ` G )
6 5eluz3
 |-  5 e. ( ZZ>= ` 3 )
7 eleq1
 |-  ( N = 5 -> ( N e. ( ZZ>= ` 3 ) <-> 5 e. ( ZZ>= ` 3 ) ) )
8 6 7 mpbiri
 |-  ( N = 5 -> N e. ( ZZ>= ` 3 ) )
9 8 anim1i
 |-  ( ( N = 5 /\ K e. J ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) )
10 eqid
 |-  ( 0 ..^ N ) = ( 0 ..^ N )
11 10 1 2 3 gpgvtxel
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> E. a e. { 0 , 1 } E. b e. ( 0 ..^ N ) X = <. a , b >. ) )
12 9 11 syl
 |-  ( ( N = 5 /\ K e. J ) -> ( X e. V <-> E. a e. { 0 , 1 } E. b e. ( 0 ..^ N ) X = <. a , b >. ) )
13 12 biimp3a
 |-  ( ( N = 5 /\ K e. J /\ X e. V ) -> E. a e. { 0 , 1 } E. b e. ( 0 ..^ N ) X = <. a , b >. )
14 elpri
 |-  ( a e. { 0 , 1 } -> ( a = 0 \/ a = 1 ) )
15 opeq1
 |-  ( a = 0 -> <. a , b >. = <. 0 , b >. )
16 15 eqeq2d
 |-  ( a = 0 -> ( X = <. a , b >. <-> X = <. 0 , b >. ) )
17 16 adantr
 |-  ( ( a = 0 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. a , b >. <-> X = <. 0 , b >. ) )
18 c0ex
 |-  0 e. _V
19 vex
 |-  b e. _V
20 18 19 op1std
 |-  ( X = <. 0 , b >. -> ( 1st ` X ) = 0 )
21 4z
 |-  4 e. ZZ
22 5nn
 |-  5 e. NN
23 22 nnzi
 |-  5 e. ZZ
24 4re
 |-  4 e. RR
25 5re
 |-  5 e. RR
26 4lt5
 |-  4 < 5
27 24 25 26 ltleii
 |-  4 <_ 5
28 eluz2
 |-  ( 5 e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ 5 e. ZZ /\ 4 <_ 5 ) )
29 21 23 27 28 mpbir3an
 |-  5 e. ( ZZ>= ` 4 )
30 eleq1
 |-  ( N = 5 -> ( N e. ( ZZ>= ` 4 ) <-> 5 e. ( ZZ>= ` 4 ) ) )
31 29 30 mpbiri
 |-  ( N = 5 -> N e. ( ZZ>= ` 4 ) )
32 1 2 3 4 5 gpg5nbgrvtx03star
 |-  ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) )
33 31 32 sylanl1
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) )
34 33 exp43
 |-  ( N = 5 -> ( K e. J -> ( X e. V -> ( ( 1st ` X ) = 0 -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) )
35 34 3imp
 |-  ( ( N = 5 /\ K e. J /\ X e. V ) -> ( ( 1st ` X ) = 0 -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
36 20 35 syl5
 |-  ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. 0 , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
37 36 adantl
 |-  ( ( a = 0 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. 0 , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
38 17 37 sylbid
 |-  ( ( a = 0 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
39 38 ex
 |-  ( a = 0 -> ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) )
40 opeq1
 |-  ( a = 1 -> <. a , b >. = <. 1 , b >. )
41 40 eqeq2d
 |-  ( a = 1 -> ( X = <. a , b >. <-> X = <. 1 , b >. ) )
42 41 adantr
 |-  ( ( a = 1 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. a , b >. <-> X = <. 1 , b >. ) )
43 1ex
 |-  1 e. _V
44 43 19 op1std
 |-  ( X = <. 1 , b >. -> ( 1st ` X ) = 1 )
45 1 2 3 4 gpg3nbgrvtx1
 |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( # ` U ) = 3 )
46 8 45 sylanl1
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( # ` U ) = 3 )
47 eqid
 |-  <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >.
48 1 eleq2i
 |-  ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
49 48 biimpi
 |-  ( K e. J -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
50 gpgusgra
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph )
51 2 50 eqeltrid
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> G e. USGraph )
52 8 49 51 syl2an
 |-  ( ( N = 5 /\ K e. J ) -> G e. USGraph )
53 52 adantr
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> G e. USGraph )
54 5 usgredgne
 |-  ( ( G e. USGraph /\ { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E ) -> <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. )
55 54 neneqd
 |-  ( ( G e. USGraph /\ { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E ) -> -. <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. )
56 55 ex
 |-  ( G e. USGraph -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E -> -. <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) )
57 53 56 syl
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E -> -. <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) )
58 47 57 mt2i
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> -. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E )
59 df-nel
 |-  ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> -. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E )
60 58 59 sylibr
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E )
61 fvexd
 |-  ( ( X e. V /\ ( 1st ` X ) = 1 ) -> ( 2nd ` X ) e. _V )
62 1 2 3 5 gpg5nbgrvtx13starlem1
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( 2nd ` X ) e. _V ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E )
63 61 62 sylan2
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E )
64 simpl
 |-  ( ( X e. V /\ ( 1st ` X ) = 1 ) -> X e. V )
65 9 64 anim12i
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) )
66 10 1 2 3 gpgvtxel2
 |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( 2nd ` X ) e. ( 0 ..^ N ) )
67 elfzoelz
 |-  ( ( 2nd ` X ) e. ( 0 ..^ N ) -> ( 2nd ` X ) e. ZZ )
68 65 66 67 3syl
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( 2nd ` X ) e. ZZ )
69 1 2 3 5 gpg5nbgrvtx13starlem2
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( 2nd ` X ) e. ZZ ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E )
70 68 69 syldan
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E )
71 opex
 |-  <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. _V
72 opex
 |-  <. 0 , ( 2nd ` X ) >. e. _V
73 opex
 |-  <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. _V
74 preq2
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } )
75 neleq1
 |-  ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) )
76 74 75 syl
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) )
77 preq2
 |-  ( y = <. 0 , ( 2nd ` X ) >. -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } )
78 neleq1
 |-  ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) )
79 77 78 syl
 |-  ( y = <. 0 , ( 2nd ` X ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) )
80 preq2
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } )
81 neleq1
 |-  ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
82 80 81 syl
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
83 71 72 73 76 79 82 raltp
 |-  ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E /\ { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E /\ { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
84 60 63 70 83 syl3anbrc
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E )
85 prcom
 |-  { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. }
86 neleq1
 |-  ( { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } -> ( { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) )
87 85 86 ax-mp
 |-  ( { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E )
88 63 87 sylibr
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E )
89 eqid
 |-  <. 0 , ( 2nd ` X ) >. = <. 0 , ( 2nd ` X ) >.
90 5 usgredgne
 |-  ( ( G e. USGraph /\ { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E ) -> <. 0 , ( 2nd ` X ) >. =/= <. 0 , ( 2nd ` X ) >. )
91 90 neneqd
 |-  ( ( G e. USGraph /\ { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E ) -> -. <. 0 , ( 2nd ` X ) >. = <. 0 , ( 2nd ` X ) >. )
92 91 ex
 |-  ( G e. USGraph -> ( { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E -> -. <. 0 , ( 2nd ` X ) >. = <. 0 , ( 2nd ` X ) >. ) )
93 53 92 syl
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E -> -. <. 0 , ( 2nd ` X ) >. = <. 0 , ( 2nd ` X ) >. ) )
94 89 93 mt2i
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> -. { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E )
95 df-nel
 |-  ( { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E <-> -. { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E )
96 94 95 sylibr
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E )
97 1 2 3 5 gpg5nbgrvtx13starlem3
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( 2nd ` X ) e. _V ) -> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E )
98 61 97 sylan2
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E )
99 preq2
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } )
100 neleq1
 |-  ( { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) )
101 99 100 syl
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) )
102 preq2
 |-  ( y = <. 0 , ( 2nd ` X ) >. -> { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } )
103 neleq1
 |-  ( { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) )
104 102 103 syl
 |-  ( y = <. 0 , ( 2nd ` X ) >. -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) )
105 preq2
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } )
106 neleq1
 |-  ( { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
107 105 106 syl
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
108 71 72 73 101 104 107 raltp
 |-  ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> ( { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E /\ { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E /\ { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
109 88 96 98 108 syl3anbrc
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 0 , ( 2nd ` X ) >. , y } e/ E )
110 prcom
 |-  { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. }
111 neleq1
 |-  ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
112 110 111 ax-mp
 |-  ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E )
113 70 112 sylibr
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E )
114 prcom
 |-  { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. }
115 neleq1
 |-  ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
116 114 115 ax-mp
 |-  ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E )
117 98 116 sylibr
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E )
118 eqid
 |-  <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >.
119 5 usgredgne
 |-  ( ( G e. USGraph /\ { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E ) -> <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. )
120 119 neneqd
 |-  ( ( G e. USGraph /\ { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E ) -> -. <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. )
121 120 ex
 |-  ( G e. USGraph -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E -> -. <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) )
122 53 121 syl
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E -> -. <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) )
123 118 122 mt2i
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> -. { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E )
124 df-nel
 |-  ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E <-> -. { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E )
125 123 124 sylibr
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E )
126 preq2
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } )
127 neleq1
 |-  ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) )
128 126 127 syl
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) )
129 preq2
 |-  ( y = <. 0 , ( 2nd ` X ) >. -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } )
130 neleq1
 |-  ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) )
131 129 130 syl
 |-  ( y = <. 0 , ( 2nd ` X ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) )
132 preq2
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } )
133 neleq1
 |-  ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
134 132 133 syl
 |-  ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
135 71 72 73 128 131 134 raltp
 |-  ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E /\ { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E /\ { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) )
136 113 117 125 135 syl3anbrc
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E )
137 preq1
 |-  ( x = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> { x , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } )
138 neleq1
 |-  ( { x , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E ) )
139 137 138 syl
 |-  ( x = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( { x , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E ) )
140 139 ralbidv
 |-  ( x = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E ) )
141 preq1
 |-  ( x = <. 0 , ( 2nd ` X ) >. -> { x , y } = { <. 0 , ( 2nd ` X ) >. , y } )
142 neleq1
 |-  ( { x , y } = { <. 0 , ( 2nd ` X ) >. , y } -> ( { x , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , y } e/ E ) )
143 141 142 syl
 |-  ( x = <. 0 , ( 2nd ` X ) >. -> ( { x , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , y } e/ E ) )
144 143 ralbidv
 |-  ( x = <. 0 , ( 2nd ` X ) >. -> ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 0 , ( 2nd ` X ) >. , y } e/ E ) )
145 preq1
 |-  ( x = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> { x , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } )
146 neleq1
 |-  ( { x , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E ) )
147 145 146 syl
 |-  ( x = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( { x , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E ) )
148 147 ralbidv
 |-  ( x = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E ) )
149 71 72 73 140 144 148 raltp
 |-  ( A. x e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E <-> ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E /\ A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 0 , ( 2nd ` X ) >. , y } e/ E /\ A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E ) )
150 84 109 136 149 syl3anbrc
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. x e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E )
151 1 2 3 4 gpgnbgrvtx1
 |-  ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> U = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } )
152 8 151 sylanl1
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> U = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } )
153 152 raleqdv
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( A. y e. U { x , y } e/ E <-> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E ) )
154 152 153 raleqbidv
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( A. x e. U A. y e. U { x , y } e/ E <-> A. x e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E ) )
155 150 154 mpbird
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. x e. U A. y e. U { x , y } e/ E )
156 46 155 jca
 |-  ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) )
157 156 exp43
 |-  ( N = 5 -> ( K e. J -> ( X e. V -> ( ( 1st ` X ) = 1 -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) )
158 157 3imp
 |-  ( ( N = 5 /\ K e. J /\ X e. V ) -> ( ( 1st ` X ) = 1 -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
159 44 158 syl5
 |-  ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. 1 , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
160 159 adantl
 |-  ( ( a = 1 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. 1 , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
161 42 160 sylbid
 |-  ( ( a = 1 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
162 161 ex
 |-  ( a = 1 -> ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) )
163 39 162 jaoi
 |-  ( ( a = 0 \/ a = 1 ) -> ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) )
164 14 163 syl
 |-  ( a e. { 0 , 1 } -> ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) )
165 164 impcom
 |-  ( ( ( N = 5 /\ K e. J /\ X e. V ) /\ a e. { 0 , 1 } ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
166 165 a1d
 |-  ( ( ( N = 5 /\ K e. J /\ X e. V ) /\ a e. { 0 , 1 } ) -> ( b e. ( 0 ..^ N ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) )
167 166 expimpd
 |-  ( ( N = 5 /\ K e. J /\ X e. V ) -> ( ( a e. { 0 , 1 } /\ b e. ( 0 ..^ N ) ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) )
168 167 rexlimdvv
 |-  ( ( N = 5 /\ K e. J /\ X e. V ) -> ( E. a e. { 0 , 1 } E. b e. ( 0 ..^ N ) X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) )
169 13 168 mpd
 |-  ( ( N = 5 /\ K e. J /\ X e. V ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) )