| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgnbgr.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 2 |
|
gpgnbgr.g |
|- G = ( N gPetersenGr K ) |
| 3 |
|
gpgnbgr.v |
|- V = ( Vtx ` G ) |
| 4 |
|
gpgnbgr.u |
|- U = ( G NeighbVtx X ) |
| 5 |
|
gpgnbgr.e |
|- E = ( Edg ` G ) |
| 6 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 7 |
|
eleq1 |
|- ( N = 5 -> ( N e. ( ZZ>= ` 3 ) <-> 5 e. ( ZZ>= ` 3 ) ) ) |
| 8 |
6 7
|
mpbiri |
|- ( N = 5 -> N e. ( ZZ>= ` 3 ) ) |
| 9 |
8
|
anim1i |
|- ( ( N = 5 /\ K e. J ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 10 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
| 11 |
10 1 2 3
|
gpgvtxel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> E. a e. { 0 , 1 } E. b e. ( 0 ..^ N ) X = <. a , b >. ) ) |
| 12 |
9 11
|
syl |
|- ( ( N = 5 /\ K e. J ) -> ( X e. V <-> E. a e. { 0 , 1 } E. b e. ( 0 ..^ N ) X = <. a , b >. ) ) |
| 13 |
12
|
biimp3a |
|- ( ( N = 5 /\ K e. J /\ X e. V ) -> E. a e. { 0 , 1 } E. b e. ( 0 ..^ N ) X = <. a , b >. ) |
| 14 |
|
elpri |
|- ( a e. { 0 , 1 } -> ( a = 0 \/ a = 1 ) ) |
| 15 |
|
opeq1 |
|- ( a = 0 -> <. a , b >. = <. 0 , b >. ) |
| 16 |
15
|
eqeq2d |
|- ( a = 0 -> ( X = <. a , b >. <-> X = <. 0 , b >. ) ) |
| 17 |
16
|
adantr |
|- ( ( a = 0 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. a , b >. <-> X = <. 0 , b >. ) ) |
| 18 |
|
c0ex |
|- 0 e. _V |
| 19 |
|
vex |
|- b e. _V |
| 20 |
18 19
|
op1std |
|- ( X = <. 0 , b >. -> ( 1st ` X ) = 0 ) |
| 21 |
|
4z |
|- 4 e. ZZ |
| 22 |
|
5nn |
|- 5 e. NN |
| 23 |
22
|
nnzi |
|- 5 e. ZZ |
| 24 |
|
4re |
|- 4 e. RR |
| 25 |
|
5re |
|- 5 e. RR |
| 26 |
|
4lt5 |
|- 4 < 5 |
| 27 |
24 25 26
|
ltleii |
|- 4 <_ 5 |
| 28 |
|
eluz2 |
|- ( 5 e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ 5 e. ZZ /\ 4 <_ 5 ) ) |
| 29 |
21 23 27 28
|
mpbir3an |
|- 5 e. ( ZZ>= ` 4 ) |
| 30 |
|
eleq1 |
|- ( N = 5 -> ( N e. ( ZZ>= ` 4 ) <-> 5 e. ( ZZ>= ` 4 ) ) ) |
| 31 |
29 30
|
mpbiri |
|- ( N = 5 -> N e. ( ZZ>= ` 4 ) ) |
| 32 |
1 2 3 4 5
|
gpg5nbgrvtx03star |
|- ( ( ( N e. ( ZZ>= ` 4 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) |
| 33 |
31 32
|
sylanl1 |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 0 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) |
| 34 |
33
|
exp43 |
|- ( N = 5 -> ( K e. J -> ( X e. V -> ( ( 1st ` X ) = 0 -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) ) |
| 35 |
34
|
3imp |
|- ( ( N = 5 /\ K e. J /\ X e. V ) -> ( ( 1st ` X ) = 0 -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 36 |
20 35
|
syl5 |
|- ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. 0 , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 37 |
36
|
adantl |
|- ( ( a = 0 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. 0 , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 38 |
17 37
|
sylbid |
|- ( ( a = 0 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 39 |
38
|
ex |
|- ( a = 0 -> ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) |
| 40 |
|
opeq1 |
|- ( a = 1 -> <. a , b >. = <. 1 , b >. ) |
| 41 |
40
|
eqeq2d |
|- ( a = 1 -> ( X = <. a , b >. <-> X = <. 1 , b >. ) ) |
| 42 |
41
|
adantr |
|- ( ( a = 1 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. a , b >. <-> X = <. 1 , b >. ) ) |
| 43 |
|
1ex |
|- 1 e. _V |
| 44 |
43 19
|
op1std |
|- ( X = <. 1 , b >. -> ( 1st ` X ) = 1 ) |
| 45 |
1 2 3 4
|
gpg3nbgrvtx1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( # ` U ) = 3 ) |
| 46 |
8 45
|
sylanl1 |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( # ` U ) = 3 ) |
| 47 |
|
eqid |
|- <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. |
| 48 |
1
|
eleq2i |
|- ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 49 |
48
|
biimpi |
|- ( K e. J -> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 50 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |
| 51 |
2 50
|
eqeltrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> G e. USGraph ) |
| 52 |
8 49 51
|
syl2an |
|- ( ( N = 5 /\ K e. J ) -> G e. USGraph ) |
| 53 |
52
|
adantr |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> G e. USGraph ) |
| 54 |
5
|
usgredgne |
|- ( ( G e. USGraph /\ { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E ) -> <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) |
| 55 |
54
|
neneqd |
|- ( ( G e. USGraph /\ { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E ) -> -. <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) |
| 56 |
55
|
ex |
|- ( G e. USGraph -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E -> -. <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) ) |
| 57 |
53 56
|
syl |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E -> -. <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. ) ) |
| 58 |
47 57
|
mt2i |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> -. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E ) |
| 59 |
|
df-nel |
|- ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> -. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e. E ) |
| 60 |
58 59
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) |
| 61 |
|
fvexd |
|- ( ( X e. V /\ ( 1st ` X ) = 1 ) -> ( 2nd ` X ) e. _V ) |
| 62 |
1 2 3 5
|
gpg5nbgrvtx13starlem1 |
|- ( ( ( N = 5 /\ K e. J ) /\ ( 2nd ` X ) e. _V ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) |
| 63 |
61 62
|
sylan2 |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) |
| 64 |
|
simpl |
|- ( ( X e. V /\ ( 1st ` X ) = 1 ) -> X e. V ) |
| 65 |
9 64
|
anim12i |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) ) |
| 66 |
10 1 2 3
|
gpgvtxel2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( 2nd ` X ) e. ( 0 ..^ N ) ) |
| 67 |
|
elfzoelz |
|- ( ( 2nd ` X ) e. ( 0 ..^ N ) -> ( 2nd ` X ) e. ZZ ) |
| 68 |
65 66 67
|
3syl |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( 2nd ` X ) e. ZZ ) |
| 69 |
1 2 3 5
|
gpg5nbgrvtx13starlem2 |
|- ( ( ( N = 5 /\ K e. J ) /\ ( 2nd ` X ) e. ZZ ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) |
| 70 |
68 69
|
syldan |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) |
| 71 |
|
opex |
|- <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. e. _V |
| 72 |
|
opex |
|- <. 0 , ( 2nd ` X ) >. e. _V |
| 73 |
|
opex |
|- <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. e. _V |
| 74 |
|
preq2 |
|- ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } ) |
| 75 |
|
neleq1 |
|- ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) ) |
| 76 |
74 75
|
syl |
|- ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) ) |
| 77 |
|
preq2 |
|- ( y = <. 0 , ( 2nd ` X ) >. -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } ) |
| 78 |
|
neleq1 |
|- ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) ) |
| 79 |
77 78
|
syl |
|- ( y = <. 0 , ( 2nd ` X ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) ) |
| 80 |
|
preq2 |
|- ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) |
| 81 |
|
neleq1 |
|- ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 82 |
80 81
|
syl |
|- ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 83 |
71 72 73 76 79 82
|
raltp |
|- ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E <-> ( { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E /\ { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E /\ { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 84 |
60 63 70 83
|
syl3anbrc |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E ) |
| 85 |
|
prcom |
|- { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } |
| 86 |
|
neleq1 |
|- ( { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } -> ( { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) ) |
| 87 |
85 86
|
ax-mp |
|- ( { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) |
| 88 |
63 87
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) |
| 89 |
|
eqid |
|- <. 0 , ( 2nd ` X ) >. = <. 0 , ( 2nd ` X ) >. |
| 90 |
5
|
usgredgne |
|- ( ( G e. USGraph /\ { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E ) -> <. 0 , ( 2nd ` X ) >. =/= <. 0 , ( 2nd ` X ) >. ) |
| 91 |
90
|
neneqd |
|- ( ( G e. USGraph /\ { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E ) -> -. <. 0 , ( 2nd ` X ) >. = <. 0 , ( 2nd ` X ) >. ) |
| 92 |
91
|
ex |
|- ( G e. USGraph -> ( { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E -> -. <. 0 , ( 2nd ` X ) >. = <. 0 , ( 2nd ` X ) >. ) ) |
| 93 |
53 92
|
syl |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E -> -. <. 0 , ( 2nd ` X ) >. = <. 0 , ( 2nd ` X ) >. ) ) |
| 94 |
89 93
|
mt2i |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> -. { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E ) |
| 95 |
|
df-nel |
|- ( { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E <-> -. { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e. E ) |
| 96 |
94 95
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) |
| 97 |
1 2 3 5
|
gpg5nbgrvtx13starlem3 |
|- ( ( ( N = 5 /\ K e. J ) /\ ( 2nd ` X ) e. _V ) -> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) |
| 98 |
61 97
|
sylan2 |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) |
| 99 |
|
preq2 |
|- ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } ) |
| 100 |
|
neleq1 |
|- ( { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) ) |
| 101 |
99 100
|
syl |
|- ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) ) |
| 102 |
|
preq2 |
|- ( y = <. 0 , ( 2nd ` X ) >. -> { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } ) |
| 103 |
|
neleq1 |
|- ( { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) ) |
| 104 |
102 103
|
syl |
|- ( y = <. 0 , ( 2nd ` X ) >. -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) ) |
| 105 |
|
preq2 |
|- ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) |
| 106 |
|
neleq1 |
|- ( { <. 0 , ( 2nd ` X ) >. , y } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 107 |
105 106
|
syl |
|- ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 108 |
71 72 73 101 104 107
|
raltp |
|- ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 0 , ( 2nd ` X ) >. , y } e/ E <-> ( { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E /\ { <. 0 , ( 2nd ` X ) >. , <. 0 , ( 2nd ` X ) >. } e/ E /\ { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 109 |
88 96 98 108
|
syl3anbrc |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 0 , ( 2nd ` X ) >. , y } e/ E ) |
| 110 |
|
prcom |
|- { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } |
| 111 |
|
neleq1 |
|- ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 112 |
110 111
|
ax-mp |
|- ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) |
| 113 |
70 112
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) |
| 114 |
|
prcom |
|- { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } |
| 115 |
|
neleq1 |
|- ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } = { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 116 |
114 115
|
ax-mp |
|- ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E <-> { <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) |
| 117 |
98 116
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) |
| 118 |
|
eqid |
|- <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. |
| 119 |
5
|
usgredgne |
|- ( ( G e. USGraph /\ { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E ) -> <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. =/= <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) |
| 120 |
119
|
neneqd |
|- ( ( G e. USGraph /\ { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E ) -> -. <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) |
| 121 |
120
|
ex |
|- ( G e. USGraph -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E -> -. <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) |
| 122 |
53 121
|
syl |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E -> -. <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. ) ) |
| 123 |
118 122
|
mt2i |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> -. { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E ) |
| 124 |
|
df-nel |
|- ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E <-> -. { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e. E ) |
| 125 |
123 124
|
sylibr |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) |
| 126 |
|
preq2 |
|- ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } ) |
| 127 |
|
neleq1 |
|- ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) ) |
| 128 |
126 127
|
syl |
|- ( y = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E ) ) |
| 129 |
|
preq2 |
|- ( y = <. 0 , ( 2nd ` X ) >. -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } ) |
| 130 |
|
neleq1 |
|- ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) ) |
| 131 |
129 130
|
syl |
|- ( y = <. 0 , ( 2nd ` X ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E ) ) |
| 132 |
|
preq2 |
|- ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) |
| 133 |
|
neleq1 |
|- ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 134 |
132 133
|
syl |
|- ( y = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 135 |
71 72 73 128 131 134
|
raltp |
|- ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E <-> ( { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. } e/ E /\ { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. } e/ E /\ { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } e/ E ) ) |
| 136 |
113 117 125 135
|
syl3anbrc |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E ) |
| 137 |
|
preq1 |
|- ( x = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> { x , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } ) |
| 138 |
|
neleq1 |
|- ( { x , y } = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E ) ) |
| 139 |
137 138
|
syl |
|- ( x = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( { x , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E ) ) |
| 140 |
139
|
ralbidv |
|- ( x = <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. -> ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E ) ) |
| 141 |
|
preq1 |
|- ( x = <. 0 , ( 2nd ` X ) >. -> { x , y } = { <. 0 , ( 2nd ` X ) >. , y } ) |
| 142 |
|
neleq1 |
|- ( { x , y } = { <. 0 , ( 2nd ` X ) >. , y } -> ( { x , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , y } e/ E ) ) |
| 143 |
141 142
|
syl |
|- ( x = <. 0 , ( 2nd ` X ) >. -> ( { x , y } e/ E <-> { <. 0 , ( 2nd ` X ) >. , y } e/ E ) ) |
| 144 |
143
|
ralbidv |
|- ( x = <. 0 , ( 2nd ` X ) >. -> ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 0 , ( 2nd ` X ) >. , y } e/ E ) ) |
| 145 |
|
preq1 |
|- ( x = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> { x , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } ) |
| 146 |
|
neleq1 |
|- ( { x , y } = { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } -> ( { x , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E ) ) |
| 147 |
145 146
|
syl |
|- ( x = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( { x , y } e/ E <-> { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E ) ) |
| 148 |
147
|
ralbidv |
|- ( x = <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. -> ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E <-> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E ) ) |
| 149 |
71 72 73 140 144 148
|
raltp |
|- ( A. x e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E <-> ( A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , y } e/ E /\ A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 0 , ( 2nd ` X ) >. , y } e/ E /\ A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. , y } e/ E ) ) |
| 150 |
84 109 136 149
|
syl3anbrc |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. x e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E ) |
| 151 |
1 2 3 4
|
gpgnbgrvtx1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> U = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) |
| 152 |
8 151
|
sylanl1 |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> U = { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } ) |
| 153 |
152
|
raleqdv |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( A. y e. U { x , y } e/ E <-> A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E ) ) |
| 154 |
152 153
|
raleqbidv |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( A. x e. U A. y e. U { x , y } e/ E <-> A. x e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } A. y e. { <. 1 , ( ( ( 2nd ` X ) + K ) mod N ) >. , <. 0 , ( 2nd ` X ) >. , <. 1 , ( ( ( 2nd ` X ) - K ) mod N ) >. } { x , y } e/ E ) ) |
| 155 |
150 154
|
mpbird |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> A. x e. U A. y e. U { x , y } e/ E ) |
| 156 |
46 155
|
jca |
|- ( ( ( N = 5 /\ K e. J ) /\ ( X e. V /\ ( 1st ` X ) = 1 ) ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) |
| 157 |
156
|
exp43 |
|- ( N = 5 -> ( K e. J -> ( X e. V -> ( ( 1st ` X ) = 1 -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) ) |
| 158 |
157
|
3imp |
|- ( ( N = 5 /\ K e. J /\ X e. V ) -> ( ( 1st ` X ) = 1 -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 159 |
44 158
|
syl5 |
|- ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. 1 , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 160 |
159
|
adantl |
|- ( ( a = 1 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. 1 , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 161 |
42 160
|
sylbid |
|- ( ( a = 1 /\ ( N = 5 /\ K e. J /\ X e. V ) ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 162 |
161
|
ex |
|- ( a = 1 -> ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) |
| 163 |
39 162
|
jaoi |
|- ( ( a = 0 \/ a = 1 ) -> ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) |
| 164 |
14 163
|
syl |
|- ( a e. { 0 , 1 } -> ( ( N = 5 /\ K e. J /\ X e. V ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) |
| 165 |
164
|
impcom |
|- ( ( ( N = 5 /\ K e. J /\ X e. V ) /\ a e. { 0 , 1 } ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 166 |
165
|
a1d |
|- ( ( ( N = 5 /\ K e. J /\ X e. V ) /\ a e. { 0 , 1 } ) -> ( b e. ( 0 ..^ N ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) |
| 167 |
166
|
expimpd |
|- ( ( N = 5 /\ K e. J /\ X e. V ) -> ( ( a e. { 0 , 1 } /\ b e. ( 0 ..^ N ) ) -> ( X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) ) |
| 168 |
167
|
rexlimdvv |
|- ( ( N = 5 /\ K e. J /\ X e. V ) -> ( E. a e. { 0 , 1 } E. b e. ( 0 ..^ N ) X = <. a , b >. -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) ) |
| 169 |
13 168
|
mpd |
|- ( ( N = 5 /\ K e. J /\ X e. V ) -> ( ( # ` U ) = 3 /\ A. x e. U A. y e. U { x , y } e/ E ) ) |